Biomass to Biofuel Supply Chain Design and Planning under Uncertainty

Concepts and Quantitative Methods

Mir Saman Pishvaee Shayan Mohseni Samira Bairamzadeh

Biomass to Biofuel Supply Chain Design and Planning under Uncertainty

Page left intentionally blank

Biomass to Biofuel Supply Chain Design and Planning under Uncertainty

Concepts and Quantitative Methods

MIR SAMAN PISHVAEE

Associate Professor, School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

SHAYAN MOHSENI

PhD Student, School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

SAMIRA BAIRAMZADEH

Postdoctoral Researcher, School of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2021 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-820640-9

For information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Brian Romer Acquisitions Editor: Peter Adamson Editorial Project Manager: Hilary Carr Production Project Manager: Prasanna Kalyanaraman Designer: Victoria Pearson

Working together to grow libraries in developing countries

Typeset by Thomson Digital

www.elsevier.com • www.bookaid.org

Contents

Pre	face		ix	
1.	An overview of biomass feedstocks for biofuel production			
	1.1. Introd	uction	1	
	1.2. First-g	eneration biofuels	3	
	1.2.1.	Sugar/starch feedstocks	3	
	1.2.2.	Edible oil feedstocks	5	
	1.3. Secor	nd-generation biofuels	7	
	1.3.1.	Lignocellulosic feedstocks	7	
	1.3.2.	Nonedible oil feedstocks	9	
	1.4. Third-	generation biofuels	12	
	1.5. Comparison of three generations of biofuels			
	1.5.1.	Land, water, and nutrient requirements	13	
	1.5.2.	Competition with food production	14	
	1.5.3.	Commercialization and production cost	15	
	1.6. Concl	usions	16	
	References		17	
2.	Biofuel supply chain structures and activities			
	2.1. Introduction			
	2.2. Gener	al structure of the biomass supply chain	22	
	2.3. Biomass conversion pathways		28	
	2.3.1.	Biomass thermochemical conversion pathways	29	
	2.3.2.	Biomass biochemical/biological conversion pathways	32	
	2.3.3.	Biomass chemical conversion pathways	33	
	2.4. Concl	usions	34	
	References		35	
3.	Decision-	making levels in biofuel supply chain	37	
	3.1. Introduction			
	3.2. Strate	gic-level decisions	39	
	3.2.1.	Selection of biomass type	39	
	3.2.2.	Selection of biomass cultivation sites	40	
	3.2.3.	Selection of facility location, technology, and capacity	41	
	3.2.4.	Biofuel distribution network design	42	
	3.2.5.	Integrated biofuel and petroleum supply chain design	42	
	3.2.6.	Biofuel market selection	43	

		3.2.7.	International trade network design	43
		3.2.8.	Biofuel supply chain network redesign	44
	3.3.	Tactica	al-level decisions	45
		3.3.1.	Harvesting and collection planning	45
		3.3.2.	Biomass storage planning	45
		3.3.3.	Biomass and biofuel transportation planning	46
		3.3.4.	Biorefinery process synthesis and design	46
		3.3.5.	Supply chain master production planning	47
		3.3.6.	Biofuel pricing and biofuel demand forecasting	48
	3.4.	Opera	tional-level decisions	48
		3.4.1.	Scheduling of supply chain operations	48
		3.4.2.	Vehicle routing and scheduling	49
	3.5.	Syster	natic classification of the literature	50
	3.6.	Conclu	usions	58
	Refe	erences		59
4.	Unc	ertair	nties in biofuel supply chain	65
	4.1.	Biofue	el supply chain risk management framework	65
	4.2.	Risk id	lentification	66
		4.2.1.	Internal risks to the supply chain entities	68
		4.2.2.	Network-related risks	71
		4.2.3.	External risks to the supply chain	75
	4.3.	Risk as	ssessment	77
	4.4.	Risk tr	eatment	79
		4.4.1.	Robustness enhancement approaches	80
		4.4.2.	Resilience enhancement approaches	86
	4.5.	Conclu	usions	89
	Refe	erences		90
5.	Sus	tainak	oility concepts in biofuel supply chain	95
	5.1.	Suppl	y chain management and introduction to sustainability paradigm	95
	5.2.	Econo	omic aspect	98
	5.3.	Enviro	nmental impacts assessment: LCA methodology	100
		5.3.1.	Goal and scope definition phase	100
		5.3.2.	Life cycle inventory analysis phase	103
		5.3.3.	Life cycle impact assessment phase	103
		5.3.4.	Life cycle interpretation phase	112
	5.4.	Social	impact assessment	113
		5.4.1.	Social impact assessment in biomass supply chains	114
		5.4.2.	Social life cycle assessment methods and guidelines	116
	5.5.	Conclu	usions	120
	Refe	rences		122

6.	Unc	ertainty modeling approaches for biofuel supply chains	127	
	6.1. Introduction			
	6.2.	Stochastic programming	131	
		6.2.1. Chance-constrained programming	132	
		6.2.2. Robust scenario-based stochastic programming	133	
	6.3.	Robust optimization	134	
		6.3.1. Preliminaries	135	
		6.3.2. Adjustable robust optimization	141	
	6.4.	Data-driven optimization	142	
		6.4.1. Data-driven robust optimization	143	
		6.4.2. Distributionally robust optimization	149	
	6.5.	Fuzzy mathematical programming	154	
		6.5.1. Possibilistic programming	155	
		6.5.2. Flexible programming model	160	
		6.5.3. Robust possibilistic programming	162	
	6.6.	Literature review of uncertainty modeling approaches in biofuel		
		supply chain	168	
	6.7.	Conclusions	175	
	Refe	rences	176	
	_			
7.		tegic planning in biofuel supply chain under uncertainty	183	
		Introduction	183	
		An overview of uncertainties related to strategic decisions	186	
	7.3.	Identification of candidate locations for supply chain design models	189	
		7.3.1. Geographic information system	190	
		7.3.2. Data envelopment analysis	192	
	7.4.	Biofuel supply chain network design	195	
		7.4.1. Switchgrass-to-bioethanol supply chain design: a case study	196	
		Conclusions	208	
	Refe	rences	210	
8.	Tac	tical planning in biofuel supply chain under uncertainty	213	
0.		Introduction	213	
		Biorefinery process synthesis and design	213	
	0.2.	8.2.1. Processing rout selection for microalgae biorefinery:	217	
		a case study	218	
	83	Biofuel supply chain master planning	229	
	5.5.	8.3.1. JCL-to-biodiesel supply chain master planning		
		under uncertainty	231	
	8.4	Conclusions	243	
		rences	244	

9. Operational planning in biofuel supply chain under unce				247	
	9.1. Introduction				
	9.2.	9.2. Short-term corn stover harvest planning (a case study)			
		9.2.1.	Problem statement	253	
		9.2.2.	Mathematical model	255	
		9.2.3.	Results and discussion	260	
	9.3. Conclusions			265	
	References				

Index

267

Preface

Growing concerns over climate change, heavy dependence on fossil fuels, increasing demand for energy, and rising oil prices are the main drivers behind the development of renewable energy that would be more costeffective, less polluting, more efficient, and more sustainable. Among different sources of renewable energy, bioenergy is one of the most prospective sources that could make a substantial contribution to meet global energy demand. Biofuels, as an important source of bioenergy, has attracted considerable attention in recent years for replacing fossil fuels in the transport sector due to numerous merits such as the possibility of production almost anywhere in the world as well as environmentally friendly potential and lower negative impacts on the ecosystem. Investment in the bioenergy industry has been encouraged in many countries around the world by setting national biofuel goals and mandates, with the purpose of replacing specific proportions of non-renewable sources with renewable ones according to a predefined time schedule. For example, the European Council established a binding EU-wide target to source at least 32% of their final energy consumption from renewables by 2030, including a possible upward revision in 2023. However, there are a variety of barriers and uncertainties preventing the large-scale and cost-competitive production of biofuels, and therefore commercialization of the biofuel industry. The main purpose of this book is to produce a complete framework to address the commercialization aspect of biomass to biofuel projects by offering supply chain design and planning models that provide a structure to achieve successful commercialization.

Biomass-to-biofuel supply chains are exposed to a wide range of uncertainties and risks arising from issues such as technology evolution, changing policies and regulations, demand and price variability, unpredictable weather conditions, production cost variations, as well as man-made and natural disasters. Failure to hedge against all such uncertainties may result in suboptimal or even infeasible supply chain decisions. To ensure the largescale and sustainable production, it is of extreme importance to develop an efficient supply chain that would be reliable enough to function well under dynamic and uncertain business environments for many years. In order to address this problem, this book aims to propose a general framework for biomass-to-biofuel supply chain design and optimization under uncertainty, which can be successfully used for the commercial-scale implementation of biofuel projects by taking into account the problems and challenges encountered in real supply chains. Thematically, the book focuses on the design and optimization of biomass-to-biofuel supply chains with particular emphasis on quantitative methods developed to solve biofuel supply chain problems under uncertainty.

Therefore, the readers of this book may be classified into at least two groups: (1) researchers and students, who can utilize an extensive overview of emerging research challenges and opportunities which is provided by the book in design and analysis of biomass-to-biofuel supply chains, and (2) practitioners and policymakers, who need a flexible platform for commercial-scale implementation; this group can utilize the general framework for biomass-to-biofuel supply chain optimization proposed in this book that incorporates promising biomass sources, different biofuel options, and major production pathways, which can be readily employed for nationallevel case studies in a large geographical area. The book can also be used as an excellent textbook for coursework or as a self-study and reference guide on two main topics, involving the design and planning of biomass supply chains, as well as optimization approaches to deal with uncertainty in input data of mathematical models. This book comprises two main parts. The first part (Chapters 1–5) sets out to describe key issues related to biofuel supply chains that is organized as follows:

Chapter 1 provides a comprehensive review of biomass feedstocks currently used in the biofuel industry or being investigated as potential sources under three headlines: first, second, and third-generation biomass. The advantages and disadvantages of three generations of biofuels, along with their challenges and opportunities for commercial-scale biofuel production, are also discussed.

Chapter 2 presents a general structure of the biomass supply chain and describes specific activities and operations of the chain corresponding to biomass production, harvesting, collection, storage, preprocessing, conversion, transportation, and distributions. Moreover, a comprehensive overview of biomass conversion pathways from a variety of biomass sources into biofuels and bioenergy products is provided, along with a description of different technologies of biomass conversion.

Chapter 3 proposes a decision-making framework for biomass-to-biofuel supply chains, which categorizes strategic, tactical, and operational level decisions that are made in different stages of the supply chain, including biomass supply and pre-processing, biofuel production, biofuel blending and

distribution, and biofuel sales. At the end, this chapter reviews the literature of Biofuel supply chain design and planning problems according to the proposed planning framework.

Chapter 4 proposes a novel risk management framework for biomassto-biofuel supply chains. In order to ensure that the supply chain model is effective and practical for real-world applications, it must provide an adequate safeguard against uncertainty, and therefore, there is a need to develop a comprehensive risk management framework for supply chain optimization models under uncertainty. To achieve this, the developed framework deals with risks and uncertainties threatening the supply chain in three stages: risk identification, risk assessment, and risk treatment.

Chapter 5 focuses on three dimensions of the sustainability paradigm, namely, economic, environmental, and social sustainability in biomass supply chains. First, it reviews different paradigms that have been proposed in the supply chain management literature, and discusses the economic aspect of sustainability in biofuel supply chains. Then, the four-phase life-cycle assessment (LCA) methodology for sustainability analysis of biofuel supply chains, and characteristics of various life cycle impact assessment methods are described in detail. The chapter ends with the description of ISO 26000:2010, as well as a brief review of social impact assessment credible methods and guidelines.

The second part of the book (Chapters 6–9) focuses on the modeling and optimization of the biomass-to-biofuel supply chain under uncertainty using different quantitative methods in order to determine the optimal design and decisions of the supply chain considering the concepts, problems, and issues described in the first part. The second part is organized as follows:

Chapter 6 provides a comprehensive overview of leading optimization approaches for hedging against various types of uncertainty in the biomass supply chain design and planning models, along with a detailed description of mathematical formulations of the uncertainty modeling approaches. Finally, it classifies and reviews the literature of biofuel supply chain studies according to the source of uncertainty, uncertainty modeling approach, the biomass type, and case study region.

Chapter 7 discusses strategic uncertainties that must be considered at the design phase of biofuel supply chains. In view of the fact that the supply chain design and strategic-level decisions are difficult to change in the short term, this chapter introduces optimization approaches to immunize the supply chain design against these risks. To this aim, a two-stage model is described to show how biofuel supply chains are designed under uncertainty. At the end of the chapter, a case study of the switchgrass-to-bioethanol supply chain is illustrated to exhibit the applicability of the model.

Chapter 8 concentrates on tactical decisions that are made at different stages of biomass-to-biofuel supply chains, and discusses tactical/operational uncertainties in the supply chains. First, to illustrate how to provide an optimal planning model for biofuel supply chains, a multi-period mixed-integer linear programming model (MILP) is presented to address the master planning of Jatropha curcas L. (JCL)-to-biodiesel supply chain under uncertainty. Then, to address the biorefinery process synthesis and design problem, a biorefinery superstructure model for biodiesel production from microalgae is proposed, taking into account uncertainty in technical factors.

This book ends with Chapter 9, which presents the operational decisions that are made at different stages of biomass-to-biofuel supply chains over a short-term, and discusses the most recognized types of uncertainties affecting the operational decisions. Second, in order to address the harvestscheduling problem, a short-term corn stover harvest-planning model is presented in this chapter, which determines the number of required bailers and assigns the optimal sequence of fields to each baler within its allowable time window. Finally, to cope with the uncertainty in the selling price of stover, a data-driven robust optimization is adopted.

We would appreciate and welcome constructive criticism and feedback from the readers together with suggestions for further improvement of the book for the next edition.

Jun 2020

Mir Saman Pishvaee Shayan Mohseni Samira Bairamzadeh