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1. INTRODUCTION 
 

Many meta-heuristic algorithms can search for the global optimum without calculation of 

derivatives. Hence, they are popular solutions for various fields of engineering and structural 

problems [1–3]. The Sine-Cosine Algorithm (SCA) is one of the recent meta-heuristic 
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ABSTRACT

The sine-cosine algorithm is concerned as a recent meta-heuristic method that takes benefit

of  orthogonal  functions  to  scale  its  walking  steps  through  the  search  space.  The  idea  is
utilized here in a different manner to develop a modified sine-cosine algorithm (MSCA). It

is  based  on  the  controlled  perturbation  about  current  solutions  by  applying  a  novel

combination  of  sine  and  cosine  functions.  The  desired  transition  from  exploration  to
exploitation phases mainly relies on such a term that provides continued fluctuations within

a dynamic amplitude. Performance of the proposed algorithm is further evaluated on a set of

thirteen  test  functions  with  unimodal  and  multimodal  search  spaces,  as  well  as  on

engineering and structural problems in a variety of discrete, continuous and mixed discrete-

continuous types. Numerical simulations show that MSCA can find the best literature results

for  such  benchmarks  problems.  Additional  fair  comparisons,  declare  competitive

performance  of  the  proposed  method  with  other  meta-heuristic  algorithms  and  its
enhancement with respect to the standard sine-cosine algorithm.
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methods that utilizes orthogonal trigonometric (sine and cosine) functions for its  search [4]. 

A number of improving techniques have already been offered for SCA to overcome 

challenges such as premature convergence, low effectiveness or efficiency. Sindhu et al. [5] 

introduced an Improved Sine Cosine Algorithm (ISCA) by applying an elitism strategy that 

preserves the updated best solution and enhances the classification accuracy. Suid et al. [6] 

presented a Modified Sine Cosine Algorithm (M-SCA) by updating the step size gain and 

also the design vector so that the original structure of SCA is preserved. Gupta and Deep [7] 

used the crossover operator and modified the searching steps of SCA by employing the 

global best or a social direction into its walks. This way, they added the information of the 

best-so-far position in the memory to the candidate solutions. A Multi-group Multi-strategy 

Sine Cosine Algorithm (MMSCA) was proposed by Yang et al. [8]; in which multiple 

populations are utilized in a parallel manner but each population employs a different 

optimization strategy. An improved sine cosine algorithm with was proposed by Gao et al. 

[9] so that the population members update their positions in three ways:  a part are 

reinitialized, another part obey the traditional SCA walks, and the remained part of the 

population utilize their own historical trajectories. Xian et al. [10] proposed a hybrid teacher 

supervision learning with SCA (TSL-SCA). Embedding opposition-based learning, adaptive 

evolution  and neighborhood search   are other techniques introduced by Feng et al. [11], to 

improve the sine cosine algorithm. Yang et al. [12] developed a multi-mechanism acting 

variant (ARSCA) for more balanced state between exploration and exploitation, and for 

enhancing the local exploitation capabilities of SCA. In this regard, they utilized an 

Adaptive Quadratic Interpolation Mechanism (AQIM) and a Rounding Mechanism (RM). 

More recent surveys on the applications and variants of the sine-cosine algorithm can be 

found in literature [2,13].  

The present work offers a new variant of the standard sine-cosine algorithm to efficiently 

seek for the solutions around the global optima. In this regard, a perturbation factor is 

utilized so that exploration and exploitation can be balanced by a tuned envelope function. 

Details of the proposed algorithm is give in Section 3 after a brief review of the standard 

sine-cosine algorithm in Section 2. Consequently, performance of the new algorithm is 

evaluated on unconstrained optimization by solving thirteen unimodal and multimodal test 

functions in Section 4. It is followed by Section 5 representing the numerical results of the 

constrained optimization for a number of benchmark engineering and structural problems in 

a variety of discrete, continuous and mixed discrete-continuous types. Fair comparisons are 

provided with the standard SCA [4] as well as eight other algorithms including Particle 

Swarm Optimization (PSO) [14], Stochastic Paint Optimizer (SPO) [15], Falcon 

Optimization Algorithm (FOA) [16], Multi-Verse Optimizer (MVO) [17], Lightning 

Attachment Procedure Optimization (LAPO) [18], Marine Predators Algorithm (MPA) [19], 

Bald Eagle Search (BES) [20] and Manta Ray Foraging Optimization (MRFO) [21]. The 

present study is concluded in Section 6. 

 

2. THE STANDARD SINE COSINE ALGORITHM 
 

Since the sine-cosine algorithm (SCA) was introduced by [4] as an innovative meta heuristic 

method, its variants have been addressed in various  applications [2, 22]. The standard SCA 
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is inspired by mathematical characteristics of the sine and the cosine functions. SCA utilizes 

the following formula to update the positions of its population of search agents: 
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t t t
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At any iteration 𝑡, the 𝑗𝑡ℎ component of the 𝑖𝑡ℎ agent is shown by 𝑋𝑖,𝑗
𝑡  while 𝑋𝐺𝑏𝑒𝑠𝑡,𝑗

𝑡  

denotes the corresponding component of the best-so-far point position.  The sign | | stands 

for the absolute value. The random numbers: 𝑟2, 𝑟3 and 𝑟4 are uniformly distributed within 

the interval [0,1]. The factor 𝑟1 is utilized for transition between the exploration and 

exploitation phases by:  

 

                                                                     
1 ( )

t
r a a

T
= −                                              (2) 

 

The current iteration number is 𝑡 while its maximum is denoted by 𝑇. The parameter 𝛼 is 

usually fixed to 2. Fig. 1a shows schematic flowchart of the sine cosine algorithm. 

 

 

 
Figure 1. Flowchart of (a) Sine Cosine algorithm (b) Modified Sine Cosine algorithm 
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global best position at the iteration 𝑡 is denoted by the vector: 𝑋𝐺𝑏𝑒𝑠𝑡

𝑡 . The proposed method, 

here-in-after called the Modified Sine-Cosine Algorithm (MSCA), utilizes a common 

strategy to share the information given by 𝑋𝐺𝑏𝑒𝑠𝑡

𝑡  with the current position of each individual 

𝑋𝑡. The strategy is implemented in MSCA by Eq. (3).  
 

1

best

t t t

i G iX X PF X+ = +                                              (3) 
 

However to form the candidate solution 𝑋𝑡+1 at every iteration, the priority given to the 

individual position is different from that given to the global best. It is utilized by introducing 

the following Perturbation Factor (𝑃𝐹): 
 

( ) ( )cos 2 sin 2PF r Rand Rand  =   −                                         (4) 
 

The function 𝑅𝑎𝑛𝑑 stands for a random number generator between 0 and 1. The transition 

factor 𝑟 is given by:  

 

1

b
c

t T d
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 −  
=  −  
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The parameters 𝑎, 𝑏, 𝑐 and 𝑑 are set prior to start the optimization process. Every meta-

heuristic algorithm has its own method of balancing between exploration and exploitation. 

Exploration is the process of searching for new solutions while exploitation refers to the 

refinement about the currently found solutions. As it turns out, promoting one usually 

corresponds to decreasing the other. The proposed algorithm uses a different strategy with 

respect to the standard SCA to apply such a balance. According to Eq. (4) PF varies between 

– 2𝑟 to 2𝑟; as a scale of the current solution vector to be added to the global best. The factor 

𝑟 dynamically tunes such a domain as the search progresses from the beginning to the end.  

Fig. 1b shows the flowchart of the proposed MSCA; that is briefed via the following steps: 

Step 1. Initiate 𝑁 individual agents of the population by randomly positioning every 𝑖𝑡ℎ  individual  
within the lower and the upper bounds on the design vector (𝑋𝐿 and 𝑋𝑈), respectively:  

 

( )i L U LX X Rand X X= +  −                                            (6) 

 
Set the iteration number to 1 and fix the parameters 𝑎, 𝑏, 𝑐 and 𝑑. 

Step 2. Evaluate the cost function for all the individuals  and identify their best as 𝑋𝐺𝑏𝑒𝑠𝑡

𝑡 . 

3.  THE PROPOSED ALGORITHM

Every  population-based  algorithm  employs  several  individual  agents  to  parallel  the  search

process in various regions of the design space.  Consequently, the best position found up to

the  current  iteration,  can  be  used  to  guide  the  search  toward  true  global  optimum.  Such  a
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Step 3. Repeat the following main loop until the termination criterion is satisfied: 

⁃ For 𝑡 form 2 to  𝑇 do 

      ◦ Calculate 𝑟 by using the Eq. (5) 

      ◦ For 𝑖 from 1 to the population size (𝑁) do 

              • Update the position of  individuals by using the Eq. (3) 

              • Force the new position to be within the lower and the upper bounds 

              • Evaluate the cost of 𝑋𝑖
𝑡+1 

              • If the cost of 𝑋𝑖
𝑡+1 is lower than 𝑋𝑖

𝑡, replace them by 50% chance otherwise 

                  keep them unchanged 

              • Exit the main loop as soon as the Number of cost Function Evaluations 

                  (𝑁𝐹𝐸) reaches 𝑁𝐹𝐸𝑚𝑎𝑥 

      ◦ Update 𝑋𝐺𝑏𝑒𝑠𝑡

𝑡  

⁃ If 𝑖 = 𝑁 and 𝑁𝐹𝐸 <  𝑁𝐹𝐸𝑚𝑎𝑥 return to Step 3, otherwise exit the loop and go to Step 4 

Step 4. After termination of the main loop, announce the updated 𝑋𝐺𝑏𝑒𝑠𝑡
 as the optimum 

solution. 

Table 1: Unimodal benchmark functions 

Function Dim Range minf
 

( ) 2

1

1

n

i

i

f x x
=

=
 

30 [-100,100] 0 

( )2

1 1

n n

i i

i i

f x x x
= =

= + 
 

30 [-10,10] 0 

( )

2

3

1 1

n i

j

i j

f x x
= −

 
=   

 
 

 
30 [-100,100] 0 

( )  4 ,1  ii if x max x n=  
 30 [-100,100] 0 

 

30 [-30,30] 0 

( )  ( )
2

6

1

0.5
n

i

i

f x x
=

= +
 

30 [-100,100] 0 

( )  )4

7

1

0,1
n

i

i

f x ix random
=

= +
 

30 [-1.28,1.28] 0 

 

 

4. OPTIMIZATION OF BENCHMARK FUNCTIONS 
 

No-free-lunch theorem [23] states that no single algorithm is better than the others in all of 

the problems. In addition, meta-heuristic algorithms have stochastic nature so several test 

cases and trial runs are usually employed to compare their performance. The proposed 

method is evaluated on a number of unconstrained benchmarks including unimodal and 
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multimodal test functions. The mathematical formulation, domain and true optimal solution 

of the treated functions are listed in Table 1 and Table 2. Two-dimensional plots of the 

functions are demonstrated in Fig. 2 and Fig. 3. 
 

Table 2: Multimodal benchmark functions 

Function Dim Range minf
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Figure 2. Two-dimensional illustration of the unimodal test functions 
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Figure 3. Two-dimensional illustration of the multimodal test functions 

 

In addition to MSCA, a number of other meta-heuristics are added into the comparison 

including the standard Sine-Cosine Algorithm (SCA) [4], Particle Swarm Optimization 

(PSO) [14], Falcon Optimization Algorithm (FOA) [16], Marine Predators Algorithm 

(MPA) [19], Lightning Attachment Procedure Optimization (LAPO) [18], Multi-Verse 

Optimizer (MVO) [17], and Stochastic Paint Optimizer (SPO) [15]. The general parameters; 

𝑁 = 20 and 𝑁𝐹𝐸𝑚𝑎𝑥 = 5000 are identically set for all the algorithms. The other control 

parameters are applied as reported in literature due to Table 3.  

 

Table 4 This table gives the statistical results (mean and standard deviation); derived over 

30 independent runs provided that at each run a new initial population is generated and 

shared between the algorithms. Superior results are bolded in the tables.  The resulting 

convergence plots are given in Fig. 4. As the fair comparions are performed based on the 

same function evaluations; the algorithms with different 𝐹𝐸𝑖𝑖 have ended in different 

iterations. 𝐹𝐸𝑖𝑖 is a metric introduced by [24], to address the number of function evaluations 

for each individual at any iteration of the main loop in a population-based algorithm. 
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Table 4: Results comparison for the test functions  

Functions MSCA SCA SPO PSO FOA MVO MPA LAPO 

 Best 4.600E-20 15.209993 7458.2091 37.575755 464.90974 3.1525194 1.164E-09 9.564E-07 

F1 Mean 5.999E-18 594.67491 22668.03 328.36756 970.00979 7.9093825 453.06786 2.655E-06 

 S.D. 1.058E-17 682.89674 8617.7788 204.06517 216.54965 2.6300001 1796.2853 1.198E-06 

 Best 2.054E-13 0.0410206 27.193502 3.9284958 11.689133 0.8987685 5.124E-06 0.0002819 

F2 Mean 5.803E-12 1.0525682 55.411075 9.6326811 14.737815 1.8745824 1.8147124 0.0006707 

 S.D. 5.915E-12 1.3439008 17.570417 4.240935 1.8911275 0.7135218 4.739519 0.0001772 

 Best 6.671E-07 3261.2057 18493.138 1553.5064 1809.1161 526.02582 0.1284737 0.0012567 

F3 Mean 0.0290714 18938.344 52826.5 7687.7204 3727.2667 1491.1539 35858.98 0.0736287 

 S.D. 0.1167901 9343.095 28854.413 4822.0889 1149.7085 665.56337 84096.079 0.1798566 

 Best 8.198E-06 44.151322 37.337415 0.9538532 9.2115958 2.9747804 0.0001357 0.0006257 

F4 Mean 0.0010409 59.210057 57.991271 5.6504879 14.037944 6.0405035 7.3114192 0.0014402 

 S.D. 0.0035817 9.0460773 8.8499774 2.6793358 2.3549168 2.1380616 16.715435 0.0004664 

 Best 26.555777 19623.189 8334752.4 191.03850 18433.465 117.4848 27.592315 28.564381 

F5 Mean 27.956081 1894166.9 42528815 9114.6846 69767.723 539.82474 1339263.2 28.845898 

 S.D. 0.7376787 2192527.5 23526755 13666.674 33071.186 491.85318 2661592.9 0.0954093 

 Best 1.9875424 26.753514 6844.0796 36.962635 505.33744 3.6961081 0.7033978 4.2154523 

F6 Mean 2.6940189 631.52855 24871.192 406.51821 896.94067 7.5768828 1243.1654 4.8562606 

 S.D. 0.4182572 880.17643 9158.2112 275.36104 188.23177 2.1188144 2514.9044 0.2905724 

 Best 0.0085469 0.2606019 1.1344287 0.1636464 0.1494028 0.0865105 0.0733587 0.010857 

F7 Mean 0.5352717 1.2524237 9.8478646 0.6001167 0.5706649 0.6395721 1.2964520 0.5724748 

 S.D. 0.2867277 1.0434461 10.834819 0.2940653 0.3253213 0.2765063 2.4281407 0.2976339 

 Best -7982.437 -4496.782 -6899.744 -8306.0393 -6494.948 -9187.702 -3085.675 -5678.458 

F8 Mean -6011.339 -3515.423 -5435.315 -6300.3948 -4505.116 -7548.059 -345.3484 -5549.597 

 S.D. 952.23766 321.16892 771.01622 788.65618 770.32264 624.4339 1353.5274 48.364647 

 Best 4.547E-13 1.8021127 69.031508 87.320333 104.32673 68.691141 4.841E-09 4.163E-06 

F9 Mean 10.017938 86.493433 198.34621 173.67585 179.31987 117.98069 19.534238 9.4551842 

 S.D. 17.552821 54.06053 49.863438 46.155547 27.001312 27.981337 47.075687 34.634397 

 Best 3.503E-11 0.6743298 14.85608 2.7783469 6.3404485 2.1382609 1.115E-05 11.140617 

F10 Mean 5.85E-10 13.437523 17.515196 4.9549361 7.6251011 2.8373253 2.4840073 12.986958 

 S.D. 5.001E-10 7.8092472 1.2298877 1.1315359 0.6698406 0.4990059 4.9643508 0.934709 

 Best 0 1.1382408 60.283315 1.0927022 5.7299923 1.0333528 1.934E-09 6.665E-07 

F11 Mean 0.0063276 5.025946 225.0756 4.3074432 8.7056357 1.0698619 10.324249 3.945E-06 

 S.D. 0.0131398 4.3342801 101.92668 2.6477378 1.8953664 0.0201534 20.264582 2.318E-06 

 Best 0.0567657 4.7206038 349091.64 0.9996752 6.1794547 0.5164856 0.0499558 0.3558409 

F12 Mean 0.2401464 3332941.2 53430869 3.3184937 12.116224 2.8615695 198872.96 0.5974686 

 S.D. 0.1802676 6414652.4 53091857 1.4344056 3.4782643 1.3624701 769255.87 0.1372273 

 Best 1.3460219 19.687762 4642121.3 4.4973541 26.014008 0.2295851 0.6674405 2.1470804 

F13 Mean 1.8790132 6542617.7 11987325 67.171351 2926.044 0.8047318 1473974.7 2.6241069 

 S.D. 0.2344503 12162043 79507449 250.21973 6364.4524 0.5376749 4572885.3 0.2199844 

Superior results are bolded. 
 

According to Fig. 4,  MSCA has exhibited superior convergence rates over the others in 
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most cases; especially for the first set of test functions with single global optimum. It is 

evident from the convergence plots of F8 to F13 that capability of MSCA in overpassing 

multiple local optima, is quite competitive with the other algorithms. 

As reported in Table 4, superior mean results belong to MSCA for all the unimodal test 

functions. In the other cases (except for the F8 function), the proposed algorithm has 

obtained the first or the second rank among the others.  
 

Table 5: Results of p-value comparison given by the Wilcoxon’s statistical test. 

F 
MSCA vs. 

SCA 

MSCA vs. 

SPO 

MSCA vs. 

PSO 
MSCA vs. FOA 

MSCA vs. 

MVO 

MSCA vs. 

MPA 

MSCA vs. 

LAPO 

F1 6.805E-43 2.415E-42 3.437E-33 7.146E-30 2.49E-39 4.533E-19 0.0965341 

F2 4.293E-36 5.587E-34 8.039E-39 5.266E-38 1.349E-42 2.362E-13 6.478E-12 

F3 1.346E-42 1.617E-42 1.537E-42 7.878E-20 1.615E-42 0.0007665 2.114E-20 

F4 1.965E-42 2.681E-42 7.819E-25 8.873E-28 1.398E-42 2.964E-22 1.349E-21 

F5 1.329E-42 2.83E-41 9.196E-38 1.203E-30 1.332E-42 0.0010715 0.1178195 

F6 1.338E-42 1.382E-42 2.592E-36 2.503E-33 6.993E-41 2.691E-09 8.553E-05 

F7 1.092E-42 1.467E-37 2.391E-38 7.198E-34 4.274E-40 1.962E-22 1.265E-21 

F8 2.661E-43 3.765E-15 0.0028359 5.286E-44 1.581E-08 3.897E-20 2.535E-27 

F9 1.047E-42 8.857E-42 2.375E-42 1.375E-41 5.839E-42 2.728E-21 2.501E-13 

F10 1.347E-42 1.779E-42 4E-41 5.323E-42 1.349E-42 4.24E-19 3.134E-19 

F11 1.049E-42 3.345E-37 2.521E-34 7.019E-29 1.347E-42 1.47E-20 0.0027535 

F12 1.24E-42 7.841E-32 4.728E-33 3.703E-22 6.276E-39 7.156E-13 0.1923834 

F13 1.293E-42 8.258E-32 7.173E-32 4.923E-24 1.931E-41 7.04E-09 0.0061478 

 

Such numerical results are also validated by a non-parametric statistical experiment; 

called Wilcoxon rank-sum test. It is implemented between MSCA and every other 

algorithm.  

According to Table 5, in most cases the resulting p-values have fallen well below the 

threshold of 0.05. It reveals superiority of MSCA over the other methods by 95% confidence 

(P-values less than 5%); in most of the treated cases except comparison of MSCA vs. PSO 

in solution of F8, vs. MPA in solution of F3 and F5 and vs. LAPO in solution of F1, F5 and 

F12. In another word, MSCA has been quite superior to the other methods in the 85 out of 

91 total cases.  The matter confirms significant confidence for statistical difference of the 

proposed MSCA with respect to SCA and the other treated algorithms.  
 

5. OPTIMIZATION OF CONSTRAINED PROBLEMS 

The performance of the proposed algorithm is further evaluated on a number of constrained 

engineering and structural problems. Each problem has some inequality constraints of the 

form 𝑔(𝑋) ≤ 0 where 𝑋 stands for the design vector. Since the algorithms exclusively 

handle single objective functions, the constraints’ effect is considered using the following 

external penalty formula. 

 

min ( ) ( ) (1 . max( ,0))P l

l

Cost X f X K g=  +                       (7) 
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Figure 4. Convergence comparison of MSCA with the other algorithms in solving test functions 
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Where 𝑔𝑙(𝑋) stands for value of the 𝑙𝑡ℎ  inequality constraint and 𝐾𝑝 is the penalty 

factor.  The raw and penalized objective functions are denoted by 𝑓(𝑋) and 𝐶𝑜𝑠𝑡(𝑋), 

respectively. During optimization, the values of the variables are enforced to fall within their 

prescribed bounds. In each case, 20 individual search agents are employed while the penalty 

factor is taken 1000.  

 

5.1 Engineering problems 

In this subsection, six engineering problems in a variety of discrete, continuous and 

mixed discrete-continuous types are solved by 30 independent runs. Every problem 

undergoes two sets of comparisons. First: the best result of MSCA is compared with those 

previously reported in the literature. Second: MSCA and nine other meta-heuristic 

algorithms are programmed and run for each problem under the fair comparison conditions 

as introduced by Shahrouzi et al. [24]. Under such conditions all the methods spend the same 

number of function calls; stating from identical initial population at each run while the same 

constraint handling is also applied.  

In this problems, several statistical measures are derived including the best, worst and 

mean cost values followed by Standard Deviation (SD), Coefficient of Variation (CV) and a 

Variation Index (VI). The latter is defined in [24,25] for fair comparison. 

In addition to MSCA, SCA, SPO, PSO, FOA, MVO, MPA, LAPO, two recent meta-

heuristics; i.e. Bald Eagle Search (BES) [20] and Manta Ray Foraging Optimization 

(MRFO) [21], are selected for the 2nd set of comparisons. Formulation of each engineering 

problem is given in Appendix A. 
 

5.1.1 The tension-compression spring problem 

In this problem the volume of the spring in Fig. 5, is to be minimized as a non-linear 

objective function subject to one linear and three non-linear constraints. They limit the 

deflection, the shear stress, and the surge frequency. The problem involves three continuous 

design variables including the wire diameter (d or 𝑥1), mean coil diameter (D or 𝑥2), and the 

number of active coils (N or 𝑥3). Table  6 reveals that MSCA has captured the best result 

with lower  computational effort than Manta Ray Foraging Optimization (MRFO) [21], 

Smart Flower Optimization Algorithm (SFOA) [26], and Zebra Optimization Algorithm 

(ZOA) [27].  

 

Figure 5. The tension/compression spring 

 

Since comparison with literature works in Table 6, does not guarantee identical test 

conditions, the second experiment is performed under the fair-comparison conditions and the 

results are reported in Table  7.  It is observed that the best result belongs to MSCA and 
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MPA; while MSCA has also better mean and standard deviation.  In this example, FOA, 

SCA and MSCA are among the most robust methods regarding the statistical measures. 
Fig. 6 shows high convergence rate of MSCA among the treated meta-heuristics. It also 

reveals that despite MSCA, some other methods have been trapped in local optima. 

 

 
Figure 6. Convergence histories of the tension/compression spring at the best design. 

 
Table 6: The results of MSCA vs. those of the literature for tension-compression spring problem 

Algorithm NFE 𝒙𝟏 𝒙𝟐 𝒙𝟑 Best Mean SD VI 

MSCA 40,000 0.051644 0.355626 11.353256 0.0126653 0.0128126 2.962E-04 2.77E+01 

MRFO [21] 50,000 0.0523734 0.3733461 10.3831265 0.0126757 0.0127007 2.137E−04 2.52E+01 

SFOA [26] 100,000 0.0517943 0.359256 11.1416 0.01268410 0.0127312 6.767E−05 1.59E+01 

ZOA [27] 100,000 0.0520983 0.366644 10.7299 0.01266801 0.0126812 0.000023 5.441+00 

 
Table 7: Results of the present work for the tension-compression spring problem 

Algorithm MSCA SCA SPO PSO FOA MVO MPA LAPO BES MRFO 

Best 0.012665 0.012762 0.012685 0.012679 0.012692 0.012796 0.012665 0.013814 0.012674 0.012685 

Mean 0.012812 0.012974 0.023619 0.014366 0.012767 0.016999 0.014124 0.015840 0.020038 0.014496 

Worst 0.014229 0.013225 0.109855 0.030460 0.013082 0.018003 0.016980 0.018455 0.109616 0.028774 

Infeasibility 0 0 0 0 0 0 0 0 0 0 

SD 2.962E-04 1.19E-04 2.253E-02 4.644E-03 8.176E-05 1.648E-03 1.872E-03 1.49E-03 2.111E-02 4.331E-03 

CV 2.31E-02 9.20E-03 9.54E-01 3.23E-01 6.40E-03 9.69E-02 1.33E-01 9.46E-02 1.05E+00 2.99E-01 

VI 2.77E+01 1.10E+01 1.14E+03 3.88E+02 7.68E+00 1.16E+02 1.59E+02 1.14E+02 1.26E+03 3.59E+02 

𝒙𝟏 0.051644 0.053272 0.050640 0.051360 0.050817 0.050243 0.051686 0.054469 0.052065 0.052161 

𝒙𝟐 0.355626 0.395505 0.332008 0.348652 0.335989 0.322894 0.356645 0.416237 0.365763 0.368088 

𝒙𝟑 11.353256 9.370574 12.899581 11.786368 12.628008 13.699092 11.293250 9.186824 10.783405 10.666432 

  

 

5.1.2 The speed reducer problem 

The objective of the speed reducer issue is to minimize the volume (a nonlinear function) 
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while taking into account a variety of eleven constraints. Among these constraints, four are 

linear constraints and seven are nonlinear. These constraints are imposed on the bending 

stress of the gear teeth, the surface stress, the transverse deflections of the shafts, and the 

stresses in the shafts illustrated in Fig. 7. The problem involves seven design variables, 

which are of both discrete and continuous types. They include the face width 𝑏 (𝑥1), module 

of the teeth 𝑚 (𝑥2), the integer number of the teeth in the pinion 𝑧 (𝑥3), the length of the first 

shaft between bearings 𝑙1 (𝑥4), the length of the second shaft between bearings 𝑙2 (𝑥5), the 

diameter of the first shaft 𝑑1 (𝑥6), and the diameter of the second shaft 𝑑2 (𝑥7).  Table  8 

reports that MSCA by spend 40000 fitness evaluations to capture the cost of 2994.6028; that 

is lower than the other results by Arithmetic Optimization Algorithm (AOA) [28], Passing 

Vehicle Search (PVS) [29] and ZOA [27].  
 

Table 8: The results of MSCA vs. those of the literature for the speed reducer problem 

Algorithm NFE 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝐱𝟓 𝐱𝟔 𝐱𝟕 Best Mean SD VI 

MSCA 40,000 3.500002 0.7 17 7.300902 7.720612 3.350237 5.286656 2994.6028 3001.8393 5.178E+00 2.07E+00 

AOA [28] 30,000 3.4976 0.7 17 7.3 7.8 3.3501 5.2857 3.00E+03 3.00E+03 1.22E-12 3.66E-13 

PVS  [29] 54,350 3.5 0.7 17 7.3 7.8 3.35021 5.28668 2996.3481 2996.3481 0 0 

ZOA [27] 100,000 3.50112 0.7 17 7.3423 7.85116 3.35194 5.28818 2998.5189 2999.212 1.36421 1.36E+00 

 
Table 9: Results of the present work for the speed reducer problem 

Algorithm MSCA SCA SPO PSO FOA MVO MPA LAPO BES MRFO 

Best 2994.6028 3055.8173 3053.4758 3001.7287 2996.9302 2998.7109 3005.5754 3013.9894 2994.6033 3238.8845 

Mean 3001.8393 3109.8093 3644.3513 3116.3919 3018.8776 3008.1942 3371.4744 3110.1163 3028.6383 55190.8750 

Worst 3016.4200 3164.8770 5800.7796 3355.5595 3165.3647 3023.1556 5482.7257 3598.0878 3161.8431 146609.182 

Infeasibility 0 0 0 0 0 0 0 0 0 0 

SD 5.178E+00 3.032E+01 7.986E+02 9.712E+01 3.248E+01 5.853E+00 8.245E+02 1.651E+02 5.177E+00 3.686E+04 

CV 1.72E-03 9.75E-03 2.19E-01 3.12E-02 1.08E-02 1.95E-03 2.45E-01 5.31E-02 1.71E-02 6.68E-01 

VI 2.07E+00 1.17E+01 2.63E+02 3.74E+01 1.29E+01 2.33E+00 2.93E+02 6.37E+01 2.05E+01 8.01E+02 

x1 3.500002 3.506199 3.600000 3.503236 3.500000 3.500052 3.505879 3.504897 3.500025 14.936715 

x2 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000 0.700004 0.703075 

x3 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.232117 

x4 7.300902 7.300000 8.299528 7.307484 7.400000 7.300000 7.491783 7.346492 7.303018 38.151256 

x𝟓 7.720612 7.828030 8.121004 7.879732 7.726512 7.811277 7.733214 7.822444 7.718183 7.942728 

x𝟔 3.350237 3.513268 3.352388 3.356323 3.351390 3.357486 3.361421 3.406666 3.350260 -7.946850 

x𝟕 5.286656 5.306784 5.288926 5.287836 5.288278 5.287057 5.292685 5.286960 5.286657 -3.984415 
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Figure 7. The speed reducer  

 

 
Figure 8. Convergence histories of the speed reducer at the best design 

 

Implementing a fair comparison test, MSCA has outperformed the other nine meta-

heuristics in terms of the best and mean results, as reported in Table 9. After MSCA (with 

the best cost of 2994.6028), BES has stood on the second rank by revealing 2994.6033; 

however, with slightly lower VI of 20.5.  Comparison of the convergence rates in Fig. 8 

shows that MSCA, BES, PSO and LAPO have been more efficient than the others in this 

problem. 
 

5.1.3 The welded beam design problem 

The objective of the welded beam problem (illustrated in Fig. 9) is to minimize the 

manufacturing cost (a nonlinear function) subject to seven inequality constraints. These 

constraints pertain to the shear stress, the bending stress in the beam, the buckling load, and 

the beam deflection. The problem involves four continuous design variables, i.e. the welding 

dimensions ℎ, 𝑙 (𝑥1, 𝑥2) in addition to the beam cross-sectional height 𝑡 (𝑥3) and width 𝑏 

(𝑥4) . 
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Figure 9. The welded beam design  

 

 According to Table 10, MSCA has captured the best design of this problem (1.724853) 

in comparison with Water Cycle Algorithm (WCA) [30], Firefly Algorithm (FA) [31] and 

ZOA [27]. WCA has achieved 1.724856 with 46450 fitness evaluations; that is 55% higher 

than 30000 fitness evaluations by MSCA.  
 

 
Figure 10. Convergence histories of the welded beam design at the best design 

 
Table 10: The results of MSCA vs. those of the literature for the welded beam problem 

Algorithm NFE 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 Best Mean SD VI 

MSCA 30,000 0.205729 3.470500 9.036630 0.205730 1.724853 1.726152 2.092E-03 1.09E+00 

WCA [30] 46,450 0.205728 3.470522 9.036620 0.205729 1.724856 1.726427 4.29E-03 2.89E+01 

FA [31] 50,000 0.2015 3.562 9.0414 0.2057  1.73121 1.878656 0.2677989 7.13E+02 

ZOA [27] 100,000 0.205739 3.470261 9.036623 0.205740 1.724916 1.725326 0.000010 1.73E-02 

 
Table 11: Results of the present work for the welded beam problem 
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Algorithm MSCA SCA SPO PSO FOA MVO MPA LAPO BES MRFO 

Best 1.72485 1.81654 1.74804 1.73268 1.74387 1.72849 1.72493 2.45080 1.73719 1.72485 

Mean 1.72615 1.87643 2.62976 1.78129 1.76537 1.76230 1.76950 3.17811 2.09278 84.44331 

Worst 1.73203 1.93744 4.69661 2.32523 1.79385 1.91515 1.89373 4.03747 4.03140 809.8500 

Infeasibility 0 0 0 0 0 0 0 0 0 0 

SD 2.094E-03 3.462E-02 7.611E-01 1.075E-01 1.226E-02 4.753E-02 6.882E-02 4.202E-01 5.413E-01 2.425E+02 

CV 1.21E-03 1.84E-02 2.89E-01 6.03E-02 6.94E-03 2.70E-02 3.89E-02 1.32E-01 2.59E-01 2.87E+00 

VI 1.09E+00 1.66E+01 2.60E+02 5.43E+01 6.25E+00 2.43E+01 3.50E+01 1.19E+02 2.33E+02 2.58E+03 

𝒙𝟏 0.205729 0.190480 0.198980 0.202427 0.201389 0.203406 0.205731 0.196676 0.203632 0.205730 

𝒙𝟐 3.470500 4.157950 3.557217 3.537500 3.516711 3.522208 3.470662 5.119694 3.559438 3.470490 

𝒙𝟑 9.036630 8.964726 9.199641 9.050680 9.165716 9.038457 9.036807 7.684496 9.054398 9.036624 

𝒙𝟒 0.205730 0.210676 0.204930 0.205931 0.205369 0.205727 0.205732 0.315768 0.205797 0.205730 

  

Another experiment is performed under fair-comparison conditions with nine other meta-

heuristics. As reported in Table 11, MSCA has captured the best result among the others. 

MRFO has revealed similar best result but with very higher mean value and standard 

deviation (or VI) than MSCA. Hence, MSCA is on the first rank of this test in both quality 

and robustness. It has also been more efficient than the others regarding the convergence 

curves in Fig. 10. 

 
Figure 11. The rolling element bearing   

 
 

5.1.4 The rolling element bearing problem 

In optimal design of the rolling element bearing (Fig. 11), the objective is to optimize the 

dynamic load carrying capacity. This optimization problem is subject to nine inequality 

constraints that pertain to the kinematic conditions and manufacturing requirements. There 

are ten design variables in such a mixed continuous-discrete problem; including the pitch 

diameter 𝐷𝑚 (𝑥1), the ball diameter 𝐷𝑏 (𝑥2), the number of balls 𝑍 (𝑥3), the inner and outer 

raceway curvature coefficients 𝑓𝑖, 𝑓𝑜 (𝑥4, 𝑥5), as well as five other variables 𝐾𝐷𝑚𝑎𝑥, 𝐾𝐷𝑚𝑖𝑛, 

𝜀, 𝑒, 𝜁 (𝑥6: 𝑥10) that impact the geometry of the bearing.  
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Table 12 compares MSCA in solution of this problem with a number of other previous 

works. Although such comparison is not done under fair conditions, it declares that MSCA 

has been successful in capturing the best (global) optimum; already reported in literature. 

 
Table 12: The results of MSCA vs. those of the literature for the rolling element bearing problem 

Algorithm NFE 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝐱𝟓 𝐱𝟔 𝐱𝟕 𝐱𝟖 𝐱𝟗 𝐱𝟏𝟎 Best Mean SD VI 

MSCA 60,000 125.719 21.426 11 0.515 0.515 0.462 0.696 0.30 0.026 0.621 -81859.74 -81781.48 144.574 3.1820 

GA [32] 225,000 125.717 21.423 11 0.515 0.515 0.4159 0.651 0.30 0.022 0.751 -81843.30 NA NA NA 

PSO [33] 30,000 125 20.753 11.17 0.515 0.515 0.5 0.615 0.3 0.051 0.6 -81691.20 -50435.01 13962.1 2.5E+2 

TLBO [34] 10,000 125.719 21.425 11 0.515 0.515 0.4242 0.633 0.3 0.069 0.799 -81859.74 -81438.98 0.66 8.1E-03 

 

Under the fair comparison conditions, superiority of MSCA is declared over the other 

nine methods of Table 13, not only in the best but also in the mean results. In addition, 

MSCA has created the best variation index (VI) of 6.5. According to Fig. 12, the MSCA and 

BES algorithm have higher convergence rates than the other meta-heuristics in solution of 

this example. 
 

Table 13: Results of the present work for the rolling element bearing problem 

Algorithm MSCA SCA SPO PSO FOA MVO MPA LAPO BES MRFO 

Best -81859.74 -80642.08 -69859.27 -78884.58 -81827.12 -81842.92 -81379.11 -55970.55 -81849.56 -81845.78 

Mean -81781.48 -75395.42 -40439.29 -37572.99 -65673.55 -81373.24 -65464.05 -36390.27 -71322.04 -64391.72 

Worst -81392.24 -68059.42 -17341.61 -17836.58 -43338.92 -79794.29 -49548.99 -30134.68 -32023.17 -57383.26 

Infeasibility 0 0 0 0 0 0 0 0 0 0 

SD 144.5745 3560.556 16399.62 16948.57 19097.82 465.7585 22507.29 6422.268 16562.85 9951.161 

CV 0.001768 0.047225 0.405537 0.451084 0.290799 0.005724 0.343812 0.176483 0.232226 0.154541 

VI 3.182068 85.00518 729.9661 811.9511 523.4387 10.30271 618.8608 317.6696 418.0072 278.1738 

𝒙𝟏 125.7190 125.0000 125.0000 125.0006 125.7138 125.7166 125.5853 125.0000 125.7170 125.7102 

𝒙𝟐 21.42559 21.24940 19.67601 20.99844 21.42105 21.42319 21.38101 18.78230 21.42476 21.42370 

𝐱𝟑 11.00000 11.00000 10.82497 11.00000 11.00000 11.00000 11.00000 9.000000 11.00000 10.70851 

𝐱𝟒 0.515000 0.515000 0.515000 0.515000 0.515000 0.515000 0.515041 0.515000 0.515001 0.515000 

𝐱𝟓 0.515000 0.515000 0.515000 0.515008 0.515002 0.515000 0.515316 0.515000 0.515010 0.515001 

𝐱𝟔 0.462368 0.500000 0.400000 0.499999 0.466866 0.400436 0.500000 0.400000 0.495555 0.086109 

𝐱𝟕 0.695630 0.692185 0.695741 0.600004 0.665036 0.623592 0.689857 0.600000 0.629172 203.8183 

𝐱𝟖 0.300000 0.300000 0.351997 0.300000 0.300000 0.300000 0.302295 0.300000 0.300072 0.300269 

𝐱𝟗 0.025593 0.065781 0.100000 0.020039 0.020000 0.099646 0.100000 0.020000 0.099040 2.174563 

𝐱𝟏𝟎 0.621255 0.600000 0.600000 0.600004 0.657348 0.631677 0.669164 0.600000 0.711410 0.619952 
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Figure 12. Convergence histories of the rolling element bearing at the best design 

 

5.1.5 The coupling with bolted rim problem 

The problem of designing the coupling with bolt rim (Fig. 13), is formulated to minimize 

the radius, the number of bolts, and lower torque of the coupling, subject to eleven 

inequality constraints. It is aimed to design a coupling with 𝑁 (𝑥1) number of bolts placed at 

𝑅𝑏(𝑥2) radius, having a diameter 𝑑 (𝑥3) that transmits a torque 𝑀 (𝑥4) by adhesion. The 

variable d is discrete and 𝑁 is an integer while 𝑅𝑏 and 𝑀 take continuous values.  

 

 
Figure 13. The coupling with bolted rim  

 

According to Table 14, the proposed method has obtained 3.25 as the best cost; showing 

14% improvement with respect to the result of 3.48 among the Rao Algorithm (Rao-3) [35], 

ABC [36] and Mine Blast Algorithm (MBA) [36]. Such a best result is obtained via just 500 

fitness evaluations by MSCA; that is much lower than 5000 by the others. It has also 

obtained lower mean and VI; that confirms its superior robustness.  

Table 15 lists the fair comparison results between 10 algorithms.  Most of them (except 

MRFO) have captured the best result of 3.25; however, MSCA, MVO and LAPO have 

produced better mean results than the others. These three methods have also been superior to 

the others in view of robustness as they have obtained the least standard deviation.   
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According to Fig. 14, MSCA, SPO and BES have higher convergence rates among the 

treated algorithms. 

 
Table 14: The results of MSCA vs. those of the literature for the coupling with bolted rim problem 

Algorithm NFE 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 Best Mean SD VI 

MSCA 500 6 8 50 40 3.25 3.25 0 0 

Rao-3 [35] 5,000 6 8 57.5 40 3.40 3.40 3.140E-15 2.31E-13 

ABC [36] 5,000 2 8 59.5 40 3.48 3.48 5.874E-06 4.22E-04 

MBA [36] 5,000 2 8 59.5 40 3.48 3.48 7.415E-08 5.33E-06 

 
Table 15: Results of the present work for the coupling with bolted rim problem 

Algorithm MSCA SCA SPO PSO FOA MVO MPA LAPO BES MRFO 

Best 3.250000 3.250000 3.250000 3.250000 3.250000 3.250000 3.250000 3.250000 3.250000 3.282189 

Mean 3.250000 3.254167 3.671909 3.502537 3.261110 3.250000 3.448431 3.250000 3.346747 4.146859 

Worst 3.250000 3.375000 4.750000 4.750000 3.447497 3.250000 4.503937 3.250000 4.280026 8.319461 

Infeasibility 0 0 0 0 0 0 0 0 0 0 

SD 0.000E+00 2.282E-02 4.698E-01 4.884E-01 4.305E-02 0.000E+00 2.926E-01 0.000E+00 2.413E-01 1.119E+00 

CV 0.00E+00 7.01E-03 1.28E-01 1.39E-01 1.32E-02 0.00E+00 8.49E-02 0.00E+00 7.21E-02 2.70E-01 

VI 0.00E+00 1.05E-01 1.92E+00 2.09E+00 1.98E-01 0.00E+00 1.27E+00 0.00E+00 1.08E+00 4.05E+00 

𝒙𝟏 6.000000 7.000000 6.000000 6.000000 6.000000 7.000000 7.000000 6.000000 6.000000 7.492532 

𝒙𝟐 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.000000 8.432537 

𝐱𝟑 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.926236 

𝐱𝟒 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.5466 

 

 
Figure 14. Convergence histories of the coupling with bolted rim at the best design. 

 

5.1.6 The spur gear problem 

The spur gear is to be designed due to the American Gear Manufacturers Association 
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(AGMA) standards. The problem is formulated to minimize the total weight of the gear, 

subject to eight inequality constraints; including the tooth bending strength, the tension 

strength of the shafts, and the gear dimensions, as shown in Fig. 15. The design variables 

include the face width of the tooth gear 𝑏 (𝑥1), the diameter of the pinion 𝑑1 (𝑥2), the 

diameter of the wheel shaft 𝑑2 (𝑥3), the number of teeth of the pinion 𝑍1 (𝑥4), the module 𝑚 

(𝑥5), and the hardness in gear design 𝐻 (𝑥6).  

 

 
Figure 15. The spur gear  

 

Table  16 reports solution of this problem by recent literature works; as well as by the 

proposed MSCA. It can be noticed that MSCA has been successful in capturing the best 

result reported in litureatue; i.e. 1538.9446.  It is 6% lower than the optimal design by Atom 

Search Optimization (ASO) [37] and 48% lower than the best result of Artificial Algae 

Algorithm (AAA) [38].  

 
Table 16: The results of MSCA vs. those of the literature for the spur gear problem 

Algorithm NFE 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝐱𝟓 𝐱𝟔 Best Mean SD VI 

MSCA 25,000 26.893776 30 17.174963 18 2.426107 400 1538.9446 1538.9456 1.17E-03 5.70E-04 

ASO [37] 25,000 28.07787 27.91758 19.67367 18 2 392 1624.2236 1713.7505 49.413599 7.21E+01 

AAA [38] 6,118 22 30 30 18 2 300.6048 2958.339 2958.339 8.45E-05 5.24E-06 

 

The second experiment is performed under fair-comparison conditions between the meta-

heuristic algorithms. According to Table 17, MSCA has earned the first rank regarding the 

best and mean results; with respect to SCA, SPO, PSO, FOA, MVO, MPA, LAPO, BES and 

MRFO. Superiority of MSCA in the mean results, ranges from 0.02 to 48 percent versus 

different algorithms. MSCA has also shown better robustness. Its standard deviation; i.e. 

0.00117 is well below 0.211 by MVO (the least value among the other methods).  
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Table 17: Results of the present work for the spur gear problem 

Algorithm MSCA SCA SPO PSO FOA MVO MPA LAPO BES MRFO 

Best 1538.9446 1562.9965 1540.3134 1539.5944 1539.0796 1539.0228 1578.6290 1745.1009 1539.3921 1539.0013 

Mean 1538.9456 1618.8044 3103.0132 1734.2182 1539.7595 1539.3137 2856.0856 2153.4708 2184.3084 2924.7153 

Worst 1538.9488 1679.1977 16260.5301 6059.7526 1540.7602 1539.7798 5413.2792 3193.6970 16066.3669 6915.4423 

Infeasibility 0 0 0 0 0 0 0 0 0 0 

SD 1.170E-03 3.257E+01 2.982E+03 8.195E+02 4.713E-01 2.110E-01 1.504E+03 3.283E+02 2.751E+03 1.987E+03 

CV 7.60E-07 2.01E-02 9.61E-01 4.73E-01 3.06E-04 1.37E-04 5.27E-01 1.52E-01 1.26E+00 6.79E-01 

VI 5.70E-04 1.51E+01 7.21E+02 3.54E+02 2.30E-01 1.03E-01 3.95E+02 1.14E+02 9.45E+02 5.10E+02 

𝒙𝟏 26.893776 27.260658 26.924754 26.895013 26.894760 26.894062 27.300580 27.244108 26.894880 26.894530 

𝒙𝟐 30.000000 30.000000 30.000000 29.999876 30.000000 29.998204 29.108882 30.000000 30.000000 29.999999 

𝐱𝟑 17.174963 18.520902 17.202007 17.254182 17.187851 17.181428 19.196013 24.750611 17.228377 17.178690 

𝐱𝟒 18.0000 18.0000 18.0875 18.0000 18.0000 18.0000 18.0000 19.0000 18.0000 18.3248 

𝐱𝟓 2.426107 2.338667 2.153070 2.154390 2.680237 2.309650 2.061632 2.096723 2.657817 2.212042 

𝐱𝟔 400.000000 400.000000 400.000000 400.000000 400.000000 400.000000 400.000000 400.000000 400.000000 399.695192 

 

In this problem, Fig. 16 reveals that some algorithms like PSO and SPO have been 

trapped in local optima and some others like SCA has suffered from lack of search 

refinement in the final iterations. In the other hand, the proposed MSCA has exhibited stable 

convergence toward the global optimum. 

 

 
Figure 16. Convergence histories of the spur gear at the best design 

 

5.2 Structural examples 

In this subsection, two structural examples are provided to evaluate the performance of 

the MSCA in size optimization. Besides conducting a fair comparison between the MSCA 

and SCA algorithms, the results are also compared to other optimization techniques. In these 

problems, the number of runs is set to 30. 
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Figure 17. The 384-bar double layer barrel vault 

 

5.2.1 The 384-bar braced barrel vault 

In this example, a double-layer barrel vault is presented as a practical structure. The 

model of the 384-bar truss is illustrated in Fig. 17. The structure has been modeled based on 

the following specifications. The material density is 0.288 𝑙𝑏/𝑖𝑛3, the modulus of elasticity 

is 30450 𝑘𝑠𝑖, the yield stress of the steel material is 58 𝑘𝑠𝑖, and nodal displacements are 

limited to 0.1969 𝑖𝑛𝑐ℎ in each of the x, y, and z directions. Concentrated loads of 20 𝑘𝑖𝑝𝑠 

are applied downward to all free nodes in the top layer. Stress limits are enforced based on 

Eq. (7) and Eq. (8). In accordance with AISC regulations, the maximum slenderness ratio for 

tension members is restricted to 300, and for compression members, it is limited to 200. The 

cross section areas are selected from the discrete list of Table 18. 
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where 𝐸 is the Young's modulus, 𝐹𝑦 stands for the yield strength, 𝐶𝑐 = √2𝜋2𝐸/𝐹𝑦  

denotes the critical slenderness ratio, and 𝜆 = 𝑘𝐿/𝑟 represents the maximum slenderness 

ratio. The effective length factor, the member length, and the section's radius of gyration are 

denoted by 𝑘, 𝐿 and 𝑟, respectively. 

 
Table 18: The steel pipe sections 

No. Type  
Area 

(in2) 

Gyration 

radius (in) 

 
No. Type  Area (in2) 

Gyration 

radius (in) 

1 ST 1/2 0.25 0.2608  20 EST 3 1/2 3.68 1.3063 

2 EST 1/2 0.32 0.25  21 DEST 2 1/2 4.03 0.8439 

3 ST 3/4 0.33 0.3333  22 ST 5 4.3 1.8801 

4 EST 3/4 0.43 0.3224  23 EST 4 4.41 1.4762 

5 ST 1 0.49 0.4197  24 DEST 3 5.47 1.0465 

6 EST 1 0.64 0.4073  25 ST 6 5.58 2.2441 

7 ST 1 1/4 0.67 0.5399  26 EST 5 6.11 1.8406 

8 ST 1 1/2 0.8 0.6229  27 DEST 4 8.1 1.3744 

9 EST 1 1/4 0.88 0.5241  28 ST 8 8.4 2.9378 

10 EST 1 1/2 1.07 0.7889  29 EST 6 8.4 2.1958 

11 ST 2 1.07 0.6045  30 DEST 5 11.3 1.7244 

12 EST 2 1.48 0.7658  31 ST 10 11.9 3.6782 

13 ST 2 1/2 1.7 0.9515  32 EST 8 12.8 2.8777 

14 ST 3 2.23 1.1637  33 ST 12 14.6 4.3715 

15 EST 2 1/2 2.25 0.9238  34 DEST 6 15.6 2.0616 

16 DEST 2 2.66 0.7018  35 EST 10 16.1 3.6287 

17 ST 3 1/2 2.68 1.3369  36 EST 12 19.2 4.3421 

18 EST 3 3.02 1.1349  37 DEST 8 21.3 2.7578 

19 ST 4 3.17 1.5102  -     

 

In this example, as per Table 19, the modified sine-cosine algorithm (MSCA) achieved 

the best result of 61,421.95 𝑙𝑏, while the sine-cosine algorithm (SCA) attained a best result 

of 95,281.52 𝑙𝑏 after 40,000 evaluations of the objective function. The 43.21% improvement 

in response demonstrates the effectiveness of the modified version in this problem. In 

addition, the modified sine-cosine algorithm (MSCA) has outperformed the algorithms 

documented in Table 19. The convergence curve displayed in Fig. 18 clearly illustrates the 

enhanced performance and rapid convergence speed of the modified version in comparison 

to the original version. As Fig. 19, both the displacements and stresses fall within the 

permissible range, with zero infeasibility. 
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Figure 18. Convergence curve of the 384-bar double layer barrel vault 

 

 

Table 19: Comparison of the optimum designs for the 384-bar braced barrel vault 

Sizing 

variables 
IBB-BC [39] ECBO [40] 

IWSA  

[41] 
EICA [42] 

RAO – 1 

[43] 
SCA MSCA 

A1 ST 1 1/2 ST 1/2 EST 1/2 ST 1/2 EST 2 ST 3 ST 1 1/2 

A2 EST 1 1/2 ST 2 1/2 EST 2 EST 3 ST 1 1/4 ST 4 EST 2 

A3 EST 2 EST 2 ST 2 1/2 EST 3 ST 3 EST 2 EST 1 1/2 

A4 ST 1 1/2 ST 1 1/2 ST 1 1/4 EST 1 1/2 ST 1 1/4 EST 1 1/4 ST 1 1/4 

A5 EST 5 EST 4 EST 4 EST 3 1/2 EST 1 1/4 ST 2 1/2 DEST 3 

A6 ST 1 1/2 ST 1 1/2 ST 1 1/4 EST 2 1/2 EST 1 1/4 EST 1 1/4 ST 1 1/2 

A7 EST 8 ST 12 ST 12 EST 10 ST 12 ST 12 EST 8 

A8 DEST 5 ST 10 DEST 5 ST 10 DEST 6 ST 12 DEST 5 

A9 ST 12 ST 12 DEST 6 EST 10 DEST 6 EST 8 EST 10 

A10 DEST 6 DEST 8 EST 10 EST 12 EST 8 EST 8 DEST 6 

A11 DEST 5 DEST 5 ST 10 EST 8 DEST 5 DEST 5 DEST 5 

A12 ST 12 EST 8 EST 8 DEST 5 DEST 5 EST 12 ST 12 

A13 EST 5 ST 6 DEST 3 DEST 2 1/2 EST 3 ST 10 DEST 3 

A14 EST 4 EST 3 1/2 EST 3 1/2 DEST 2 DEST 8 EST 4 DEST 2 1/2 

A15 DEST 2 ST 2 1/2 ST 2 1/2 ST 1/2 EST 2 1/2 EST 3 ST 2 1/2 

A16 DEST 3 ST 5 ST 4 ST 4 DEST 2 1/2 ST 8 EST 5 

A17 EST 5 EST 4 EST 5 DEST 2 EST 3 1/2 EST 5 DEST 3 

A18 ST 1 1/2 EST 1 1/2 EST 1 1/2 EST 4 ST 1 1/4 DEST 5 EST 2 

A19 ST 1 1/2 ST 1 1/4 ST 1 1/4 ST 4 ST 1 1/2 ST 8 ST 1 1/4 

A20 ST 1 1/2 EST 1 1/2 EST 1 1/2 ST 3/4 EST 1 1/2 ST 4 EST 1 1/2 

A21 ST 1 1/2 EST 1 1/2 EST 2 ST 1/2 ST 1 1/2 DEST 3 EST 1 1/2 

A22 ST 1 1/2 ST 1 1/4 ST 1 1/4 ST 1 1/2 ST 2 1/2 ST 8 ST 1 1/2 



A MODIFIED SINE-COSINE ALGORITHM WITH DYNAMIC ... 

 

409 

A23 ST 1 1/2 EST 1 1/2 EST 1 ½ ST 2 EST 1 1/2 EST 5 EST 1 1/2 

A24 EST 3 EST 2 1/2 DEST 2 DEST 2 ST 2 1/2 DEST 2 ST 3 

A25 ST 2 1/2 ST 2 1/2 EST 1 1/2 ST 2 1/2 ST 2 1/2 EST 5 EST 2 

A26 ST 2 1/2 ST 2 1/2 ST 2 1/2 ST 2 1/2 ST 1 1/4 ST 4 ST 3 

A27 ST 3 1/2 DEST 2 DEST 2 ST 2 1/2 EST 2 ST 8 ST 3 

A28 EST 1 1/2 EST 1 1/2 EST 1 1/2 EST 1 1/2 EST 1 1/2 EST 4 EST 1 1/2 

A29 EST 2 ST 2 1/2 ST 2 1/2 ST 2 ST 1 1/2 DEST 4 EST 2 

A30 EST 1 1/2 EST 1 1/2 EST 2 DEST 2 ST 1 1/2 EST 2 EST 2 

A31 EST 1 1/2 EST 1 1/2 EST 2 ST 1 1/2 ST 1 1/2 EST 1 1/2 EST 1 1/2 

Best weight 

(lb) 
61,972 62,486.02 61,564.72 61,821.146 61,473.7 95,281.52 61,421.95 

Mean 62,196 65,785 63,771 65,356.699 N/A 107,030.95 63,540.85 

SD N/A 3,386 1,495 20,84.912 N/A 8,423.17 1,403.77 

max ( )NFE NFE  50,000 15,980 20,000 7,800 20,000 40,000 
40,000 

(32,730) 

 

 

 
Figure 19. Displacement and Stress ratio of the 384-bar double layer barrel vault (MSCA) 

 

 

5.2.1 The 582-bar tower 

The 582-bar tower is chosen as the last practical design, as depicted in Fig. 20. This 

structure has been modeled and analyzed with the following characteristics. The elasticity 

modulus is 204 𝑀𝑃𝑎, and the yield stress is set at 253.1 𝑀𝑃𝑎. The tower is engineered to 

resist a single load case comprising lateral loads of 5 𝑘𝑁 in the 𝑋 and 𝑌 directions, with each 
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node subjected to a downward load of 30 𝑘𝑁. Nodal displacements are limited to 0.08 𝑚 in 

each direction. Stress limits are enforced based on Eq. (7) and Eq. (8). Furthermore, the 

limitations on the maximum slenderness ratio for tension and compression members are 

imposed on the structure, set at 300 and 200, respectively. The W-shape profiles are chosen 

from Table 20. 

In this example, the modified version of the sine-cosine algorithm (MSCA), as shown in 

Table 21, obtained a value of 19.9229 𝑚3, which outperforms the original version (SCA) 

and other algorithms in the literature. Furthermore, the algorithm not only outperformed 

other methods by obtaining the best solution but also accomplished this feat with just 6000 

evaluations of the objective function. The objective function evaluation for EVPS is 21000, 

and for BB-BC, it is 12500, with the corresponding best results being 21.33374 𝑚3 and 

22.371 𝑚3, respectively. 
 

 
Figure 20. The 582-bar tower 

 
Table 20: Profile list from ASIC code 

No. Profile No. Profile No. Profile No. Profile No. Profile No. Profile No. Profile 

1 W8x21 21 W14x48 41 W12x87 61 W33x118 81 W24x176 101 W24x176 121 W30x292 

2 W10x22 22 W10x49 42 W10x88 62 W18x119 82 W14x176 102 W14x176 122 W40x297 

3 W8x24 23 W12x50 43 W16x89 63 W14x120 83 W27x178 103 W27x178 123 W36x300 

4 W6x25 24 W12x53 44 W14x90 64 W21x122 84 W21x182 104 W21x182 124 W14x311 

5 W12x26 25 W10x54 45 W21x93 65 W24x131 85 W12x190 105 W12x190 125 W33x318 

6 W8x28 26 W12x58 46 W27x94 66 W14x132 86 W30x191 106 W30x191 126 W30x326 

7 W12x30 27 W10x60 47 W12x96 67 W12x136 87 W24x192 107 W24x192 127 W36x328 

8 W14x30 28 W14x61 48 W18x97 68 W14x145 88 W14x193 108 W14x193 128 W44x335 
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9 W8x31 29 W21x62 49 W14x99 69 W27x146 89 W27x194 109 W27x194 129 W14x342 

10 W10x33 30 W12x65 50 W16x100 70 W24x146 90 W40x199 110 W40x199 130 W33x354 

11 W14x34 31 W16x67 51 W10x100 71 W21x147 91 W33x201 111 W33x201 131 W36x359 

12 W8x35 32 W10x68 52 W21x101 72 W36x150 92 W30x211 112 W30x211 132 W14x370 

13 W16x36 33 W12x72 53 W24x104 73 W12x152 93 W14x211 113 W14x211 133 W14x398 

14 W14x38 34 W14x74 54 W12x106 74 W18x158 94 W40x215 114 W40x215 134 W14x426 

15 W10x39 35 W18x76 55 W14x109 75 W14x159 95 W27x217 115 W27x217 135 W14x455 

16 W8x40 36 W10x77 56 W21x111 76 W27x161 96 W33x221 116 W33x221 136 W14x500 

17 W12x40 37 W12x79 57 W10x112 77 W24x162 97 W24x229 117 W24x229 137 W14x550 

18 W14x43 38 W14x82 58 W27x114 78 W12x170 98 W36x230 118 W36x230 138 W14x605 

19 W12x45 39 W27x84 59 W30x116 79 W30x173 99 W44x230 119 W44x230 139 W14x665 

20 W10x45 40 W18x86 60 W24x117 80 W40x174 100 W12x230 120 W12x230 140 W14x730 

 
The convergence diagram of Fig. 21 validates MSCA superior performance over SCA. 

Based on Fig. 22, it is evident that the constraints of the problem are met within their 

permissible boundaries, and the degree of constraint violation or infeasibility in the optimal 

solution is zero. 

 

 
Figure 21. Convergence curve of the 582-bar tower 
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Figure 22. Displacement and Stress ratio of the 582-bar tower (MSCA) 

 

 
Table 21: Comparison of the optimum designs for the 582-bar tower 

Sizing 

variables 
BB-BC [44] CBO [45] STA [25] EVPS  [46] SCA MSCA 

A1 W8x24 W8x21 W8x21 W8x21 W8x21 W8x21 

A2 W24x68 W12x79 W10x68 W10x77 W18x97 W18x76 

A3 W8x28 W8x28 W8x21 W8x24 W8x21 W8x21 

A4 W18x60 W10x60 W10x77 W10x60 W12x72 W14x61 

A5 W8x24 W8x24 W8x21 W6x25 W8x21 W8x21 

A6 W8x24 W8x21 W8x21 W8x21 W8x21 W8x21 

A7 W21x48 W10x68 W10x60 W12x50 W14x38 W10x49 

A8 W8x24 W8x24 W8x21 W6x25 W8x21 W8x21 

A9 W10x26 W8x21 W8x21 W10x22 W8x21 W8x21 

A10 W14x38 W14x48 W14x48 W8x40 W8x21 W12x50 

A11 W12x30 W12x26 W8x21 W8x24 W8x24 W8x21 

A12 W12x72 W21x62 W14x74 W10x77 W14x211 W10x68 

A13 W21x73 W18x76 W16x67 W12x72 W14x90 W12x79 

A14 W14x53 W12x53 W12x65 W12x50 W12x26 W10x54 

A15 W18x86 W14x61 W12x65 W10x88 W21x101 W18x76 

A16 W8x31 W8x40 W8x21 W6x25 W12x50 W8x21 

A17 W18x60 W10x54 W12x65 W14x61 W16x89 W12x65 

A18 W8x24 W12x26 W8x21 W6x25 W8x21 W8x21 
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A19 W16x36 W8x21 W8x21 W8x21 W8x21 W8x21 

A20 W10x39 W14x43 W10x68 W12x45 W16x36 W8x40 

A21 W8x24 W8x24 W8x21 W8x24 W8x21 W8x21 

A22 W8x24 W8x21 W8x21 W8x21 W8x21 W8x21 

A23 W8x31 W10x22 W10x22 W8x24 W8x21 W8x21 

A24 W8x28 W8x24 W8x21 W6x25 W8x21 W8x21 

A25 W8x21 W8x21 W12x40 W10x22 W10x33 W8x21 

A26 W8x24 W8x21 W6x25 W6x25 W8x21 W12x26 

A27 W8x28 W8x24 W10x22 W8x24 W8x21 W8x21 

A28 W14x22 W8x21 W8x21 W10x22 W8x21 W8x21 

A29 W8x24 W8x21 W8x28 W10x22 W8x21 W8x21 

A30 W8x24 W6x25 W10x22 W8x24 W8x21 W8x21 

A31 W14x22 W10x33 W16x36 W8x21 W8x21 W8x24 

A32 W8x24 W8x28 W12x53 W8x24 W14x38 W8x21 

Best (𝒎𝟑) 22.371 21.838 21.130 21.33374 23.0520 19.9229 

Mean N/A N/A 23.738 N/A 26.6777 21.2294 

SD N/A N/A N/A N/A 2.5894 1.9623 

max ( )NFE NFE  12,500 6,400 6,000 21,000 6,000 6,000 (5,185) 

 

 

6. CONCLUSION  
  

It was declared that MSCA combines the global-best with a scaled position of the current 

search agent; that relies on the combination of sine-cosine fluctuations as well as on an 

envelope function. By tuning the parameters of the envelope function the desired balance is 

provided between the exploration and the exploitation.   

Performance of MSCA was evaluated on thirteen (unimodal and multimodal) test 

functions by fair comparison with SCA, SPO, PSO, FOA, MVO, MPA and LAPO. 

Wilcoxon’s test statistically confirmed superiority of MSCA over the aforementioned 

methods by 95% confidence; in 85 cases out of 91 ones.  

A set of six engineering benchmarks in discrete, continuous and mixed discrete-

continuous types and two discrete practical structural problems was then treated to evaluate 

the proposed method in constrained optimization. According to the numerical simulation, it 

was found that MSCA can exhibit superior or competitive results with those reported in 

literature. Fair comparison with nine other meta-heuristics, better declared relative rank of 

MSCA in optimizing the real word problems. In the design of coupling with bolted rim, 

MSCA successfully captured the global best as well as the others meanwhile it revealed 

better mean result than the others. Although both MSCA and MRFO captured the global 

solution of the welded-beam problem, MSCA was more robust; revealing much better 

standard deviation and the mean result. In the other constrained problems, MSCA stood on 

the first rank by obtaining superior results with respect to the other nine algorithms.  

As a practical merit, the proposed method is interesting due to its simple operators. Its 
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control parameters are tunable to provide dynamic balance between exploration and 

exploitation and to reveal competitive performance with other population-based methods. 

Particularly, MSCA is an affordable enhanced algorithm with respect to the standard SCA 

for solution of unconstrained functions as well as engineering benchmark and structural 

problems.  
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( )7 1 0
40

mz
g x = −   

( )8

5
1 0

m
g x

b
= −   

( )9 1 0
12

b
g x

m
= −   

( ) 1
10

1

1.5 1.9
1 0

d
g x

l

+
= −   

( ) 2
11

2

1.1 1.9
1 0

d
g x

l

+
= −   

where 

2.6 3.6b  , 0.7 0.8m  , 17 28z  , 17.3 8.3l  , 27.8 8.3l  , 12.9 3.9d   

and 25 5.5d  . 

 

A.3 The welded beam problem 

Minimize  ( ) ( )21.10471 0.04811 14.0f x h l tb l= + +  

Subjected to 

( ) ( )1 0maxg x x = −   

( ) ( )2 0maxg x x = −   

( )3 0g x h b= −   

( ) ( )2

4 0.1047 0.04811 14 5.0 0g x h tb l= + + −   

( )5 0.125 0g x h= −   
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( ) ( )6 0maxg x x = −   

( ) ( )7 0cg x P P x= −   

where 

6000 P lb= , 14 L in= , 
630 10  E psi=  , 

612 10  G psi=  , 13600 max psi = , 

30000  ,   0.25 max maxpsi in = = , 0.1 , 2h b   and 0.1 , 10l t  . 

( )
2 6

2

4.013 36
1

2 4
c

E t b t E
P x

L L G

 
= −  

 

ƒ
 

( ) 2

6PL
x

bt
 =  

( )
22

2 2
12 4

h tl
J hl

  + 
= +  

    

 

( )
3

3

4PL
x

Et b
 =  

2

l
M P L

 
= + 

 
 

( )
22

4 4

h tl
R

+
= +  

MR

J
  =  

2

P

hl
  =  

( ) ( )
2 2

2
2

l

R
    = + +     

 

A.4 The rolling element bearing problem 

Maximize ( )

2

1.83

2

1.43

                  25.4 

3.647        25.4 

d c b b

d c b b

C f Z D if D mm
f x

C f Z D if D mm


= − 

= 
 = − 

 

Subjected to 
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( ) 0
1

1

1 0

2 b

m

g x Z
D

sin
D

−


= − − 

 
 
 

 

( ) ( )2 2 0
minD bg x K D d D= − −   

( ) ( )3 2 0
maxb Dg x D K D d= − −   

( )4 0bg x D B= −   

( ) ( )5 0.5 0mg x D d D= + −   

( ) ( )( )6 0.5 0mg x D e D d= − + +   

( ) ( )7 0.5 0b m bg x D D D D= − − −   

( )8 0.515 0ig x f= −   

( )9 0.515 0og x f= −   

 

where 

0 = , 
cosb

m

D

D


 = , 160D = , 90d = , 30B = , 2 bT D d D= − − , 

( ) ( )0.5 0.6mD d D D d+   + , ( ) ( )0.15 0.45bD d D D d−   − , 4 50Z  , 

0.515 0.6if  , 0.515 0.6of  , 0.4 0.5
minDK  , 0.6 0.7

maxDK  , 0.3 0.4  , 

0.02 0.1e   and 0.6 0.85  . 

 

( )

( )

( )

( )

0.3
10 3

0.41 0.411.391.72 0.3

1 3

2 1 1 21
37.91 1 1.04

1 2 1 2 11

i o i
c

o i i

f f f
f

f f f

 

 

−

       − −   −     = +         + − −   +              

ƒ

ƒ

 

( ) ( )     

( )  

2 2 2

1

0

/ 2 3 / 4 / 2 / 4  / 2 / 4
2 2

2 / 2 3( / 4 / 2 / 4 

b

b

D d T D T D d T
cos

D d T D T D
 −

 − − + − − − +
  = −
 − − − −
 

 

 

A.5 The coupling with bolted rim problem 
 

Table A.5.1 The Discrete list for selection of the bolts 

d 
 

( )1ed d=
  

( )2 2d d=
  

( )3p d=
  

( )4mb d=
  

( )5ms d=
 

6 5.062 5.350 1.00 7.50 14.50 

8 6.827 7.188 1.25 9.50 18.50 
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10 8.593 9.026 1.50 12.50 23.50 

12 10.358 10.863 1.75 13.50 26.50 

14 12.124 12.701 2.00 15.50 29.50 

16 14.124 14.701 2.00 17.00 32.00 

20 17.655 18.376 2.50 21.00 40.00 

24 21.185 22.051 3.00 25.00 48.00 

Minimize  ( )
( )4

1 2 3

b

m M T

R d cN M
f x

N R M


  

 + +   
= + +    

    
 

Subjected to 

( )
( )1 1 0

b

M
g x

NR K d


= −   

( )
( )2

5

2
1 0bR

g x
d N


= − 


 

( )
( )3

4

1 0b
M

R
g x R

d
= − − 


 

( )4 0maxg x N N= −   

( )5 0b Maxg x R R= −   

( )6 0Mg x N N= −   

( )7 0M bg x R R= −   

( )8 0maxg x M M= −   

( )9 0Tg x M M= −   

( )10 24 0g x d= −   

( )11 6 0g x d= −   

where 

1.5,  627 eR MPa = = , 8MN = , 100maxN = , 50 MR mm= , 1000 maxR mm= , 5c = , 

1 2 3 1  = = = , 40TM = , 1000maxM = , 0.15mf = , 1 0.15f = , 8 100N  , 

50 100BR   and 40 100M  . 

( )
( )

( ) ( )
( )

2

1

2

3 2 1

1

0.9

0.16 0.583
4 1 3

m ef R d
K d

d d f

d


=

  + 
+    
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A.6 The spur gear problem 

Minimize  ( ) ( ) ( )( ) ( )2 2 2 2 2 2 2 2

1 0 1 21
4000

i pf x bm Z u D d l b nd b b d d 


 =  + − − − − − +
 

 

Subjected to 

( )1 1 0n s r ms

v o m

S C K K bJm
g x b

k K k

 
= −  

 
 

( )
2 2 2

1

2 1 2
0

fe l r

p v o m

S C C bD I
g x b

C K K K
= −   

( )
( ) ( )

2

1 2 1

3 2

sin 2
1 0

4

D D D
g x D

m

 +
= + −   

( )4 8 0
b

g x
m

= −   

( )5 16 0
b

g x
m

= −   

( ) 3

6 3 1 0g x b d= −   

( ) 3

7 4 2 0g x b d= −   

( )
( ) 1

8

1
250 0

2

u mZ
g x

+
= −   

where 

8 = , l b= , 4u = , 2.5l m =  , 3.5b m =  , 6n = , 7.5P = , 0.814rK = , 1.4msK =

, 1oK = , 1.3mK = , 1lC = , 1rC = , 25 = , 191PC = , 19.62 = , ( )1 2.5Dr m aZ=  − , 

2i rD D l= − , 0 2 25d d= + , ( )00.25P id D d= − , 1 1D mZ= , 1 1500N = , 

1 1 60000v D N= ƒ , 1 1000b P v= ƒ , 1.7236nS H= , 0.0007548 0.8899sC H= − + , 

( )78 196.85 / 78vK v= + , 2.8 69
ef

S H= − , ( ) ( ) ( )sin cos / 2 1I a a=     + , 

3 2

1 1 11.766 6 0.0002996 0.01772 0.1608J E z z z= − − + + , 2 1D amZ= , 3 14.97 6 /b E P N = 

, 2 1N N a= ƒ , 4 24.97 6 /b E P N =  ,  10,35 b mm ,  1 10, 30 d mm ,  2 10, 40 d mm , 

 1 18, 25Z  ,  1,1  .25,1  .5, 2, 2.75, 3, 3.5, 4m  and  200,400H  . 
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