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ABSTRACT 
 

This study presents a novel approach for optimizing critical failure surfaces (CFS) 

in homogeneous soil slopes by incorporating seepage and seismic effects through 

the Self-Adaptive Enhanced Vibrating Particle System (SA_EVPS) algorithm. The 

Finite Element Method (FEM) is employed to model fluid flow through porous 

media, while Bishop's simplified method calculates the Factor of Safety (FOS). 

Two benchmark problems validate the proposed approach, with results compared 

against traditional and meta-heuristic methods. The SA_EVPS algorithm 

demonstrates superior convergence and accuracy due to its self-adaptive parameter 

optimization mechanism. Visualizations from Abaqus simulations and 

comprehensive statistical analyses highlight the algorithm's effectiveness in 

geotechnical engineering applications. The results show that SA_EVPS 

consistently achieves lower FOS values with smaller standard deviations compared 

to existing methods, indicating more accurate identification of critical failure 

surfaces. 

 

 
Keywords: Slope stability; Critical failure surface; SA_EVPS algorithm; Meta-

heuristic optimization; Geotechnical engineering. 

 
Received: 29 April 2025; Accepted: 3 July 2025 
 

 

 
*Corresponding author: Faculty of Engineering, Mahallat Institute of Higher Education, Mahallat, Iran 

P.Hosseini@mahallat.ac.ir (P. Hosseini) 



M. Paknahad, P. Hosseini, A.R. Mazaheri, and A. Kaveh 280 

1. INTRODUCTION 
 

Slope stability analysis represents a fundamental challenge in geotechnical engineering, 

essential for ensuring the safety and reliability of infrastructure including embankments, 

dams, and highways. The primary objective involves identifying the Critical Failure Surface 

(CFS) and its associated Factor of Safety (FOS), which quantifies a slope's resistance to 

failure under various loading conditions. Early analytical methods relied primarily on 

manual calculations, significantly limiting their applicability to simple geometries and 

idealized conditions. The development of computational techniques, particularly Limit 

Equilibrium Methods (LEMs) pioneered by Fellenius [1], Bishop and Morgenstern [2], 

Morgenstern and Price [3], and Spencer [4], revolutionized slope stability analysis by 

enabling more complex analyses. However, LEMs often assume simplified failure surface 

geometries (typically circular) and encounter difficulties when addressing complex loading 

conditions, particularly those involving seepage and seismic forces [5]. 

Seepage fundamentally alters the stress distribution within slopes by modifying pore 

water pressure, consequently reducing effective stress and potentially triggering instability. 

Similarly, seismic forces introduce dynamic loads that can dramatically reduce slope 

stability through cyclic loading and excess pore pressure generation. Accurate modeling of 

these coupled effects requires sophisticated numerical methods such as the Finite Element 

Method (FEM), which solves the governing differential equations of fluid flow and stress 

distribution simultaneously. Traditional optimization methods, including grid search, 

simplex, and conjugate-gradient techniques, have been extensively applied to locate the CFS 

[6,7]. While these deterministic methods offer robustness in certain applications, they suffer 

from high computational costs and susceptibility to convergence at local minima in non-

convex solution spaces, particularly when evaluating multiple trial failure surfaces [8]. 

Meta-heuristic algorithms have emerged as powerful alternatives to address these 

computational limitations by efficiently exploring complex, multi-dimensional solution 

spaces. These algorithms, inspired by natural phenomena or mathematical principles, include 

Genetic Algorithms (GA) [9], Particle Swarm Optimization (PSO) [10], and Firefly 

Algorithm (FA) [11], all of which have demonstrated success in slope stability problems. 

However, their performance typically depends on manually tuned parameters that may not 

be optimal across different problem types [12]. This limitation can result in inconsistent 

performance and necessitates extensive parameter sensitivity analyses. 

The Self-Adaptive Enhanced Vibrating Particle System (SA_EVPS) algorithm, recently 

introduced by Paknahad et al. [13], addresses this fundamental limitation through dynamic 

parameter optimization tailored to each specific problem [14]. Building upon the foundation 

of the Enhanced Vibrating Particle System (EVPS) [15], SA_EVPS incorporates a self-

adaptive mechanism that optimizes its internal parameters before the main optimization 

process. This innovation enhances both convergence speed and solution quality, making it 

particularly suitable for complex geotechnical optimization tasks. The SA_EVPS and EVPS 

algorithms has already demonstrated their versatility through successful applications in 

various engineering domains, including optimization of large-scale truss structures [16], 

concrete mix design optimization using artificial neural networks [17-19], and reliability-

based design optimization [20]. 

This study applies the SA_EVPS algorithm to optimize the CFS of homogeneous soil 
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slopes while comprehensively accounting for seepage and seismic effects through FEM 

integration. Two well-established benchmark problems, previously analyzed by Malkawi et 

al. [21] and Zolfaghari et al. [9], serve to validate the proposed approach through rigorous 

comparison with existing methods. 

The primary motivation for employing SA_EVPS lies in its ability to adaptively tune 

parameters, thereby reducing reliance on empirical adjustments and improving robustness 

across diverse problem configurations. The seamless integration of FEM ensures accurate 

modeling of seepage-induced pore pressures and seismic forces, significantly enhancing the 

reliability of FOS calculations. This paper contributes to the geotechnical engineering field 

by demonstrating SA_EVPS's superior efficacy in slope stability optimization and 

establishing a comprehensive framework for future applications. 

The remainder of this paper is organized as follows: Section 2 presents the mathematical 

formulation of fluid flow equations and their FEM implementation. Section 3 describes the 

SA_EVPS algorithm architecture and the formulation of the objective function. Section 4 

presents the benchmark problems, computational results, and comparative analyses. Section 

5 provides a critical analysis of SA_EVPS performance, limitations, and potential 

improvements. Section 6 concludes with key findings and directions for future research. 

 

 

2. FLUID FLOW THROUGH POROUS MEDIA 
 

2.1 Strong Form of the Governing Equation 

Fluid flow through porous media, such as saturated soil, is governed by Darcy's law, 

which establishes a linear relationship between fluid velocity and hydraulic gradient. For a 

two-dimensional domain, the continuity equation, when combined with Darcy's law, yields 

the strong form of the governing equation as Eq.(1): 

0x yk k Q
x x y y

      
+ + =  

      
 (1) 

where   represents the fluid head (m), xk and yk  denote the permeability coefficients 

(m/s) in the x and y directions respectively, and Q  represents the volumetric flow rate per 

unit volume 
1S −
. The boundary conditions for this problem include: 

• Dirichlet boundary condition:  = on surface q  

• Neumann boundary condition: x x y yk n k n q
x y

  
+ =

 
on surface q  

where xn  and yn  represent the direction cosines of the outward normal to q , and q  

denotes the prescribed flux across the boundary. 
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2.2 Weak Form Derivation 

To implement the FEM, the strong form must be transformed into its weak form by 

introducing a test function w  and integrating over the domain  : 

0x yw k k Q d
x x y y

 


      
+ +  =   

       
  (2) 

 

Applying integration by parts and utilizing the divergence theorem, the weak form 

becomes: 

0x y x x y y

w w
k k d w k n k n d wQd

x x y y x y

   
  

        
+ − + +  =  

        
    (3) 

 

The boundary integral is subsequently simplified using the Neumann boundary condition, 

resulting in a formulation suitable for FEM discretization. 

2.3 Finite Element Formulation 

The computational domain is discretized into three-node triangular elements for 

numerical efficiency. Within each element, the fluid head is approximated using shape 

functions: 

e

i i

i

N =  (4) 

 

where iN  represent the shape functions and denote the nodal fluid head values. For a 

triangular element, the shape functions are expressed as: 

2

i i i
i

a b x c y
N

A

+ +
=  (5) 

 

where A  represents the element area, and the coefficients ia , ib , are computed from 

nodal coordinates using standard finite element procedures. . The gradient matrix B  is 

formulated as: 

N

x

N

y

 
 
 =
 
  

B  (6) 

 

The velocity field is subsequently related to the gradient through: 

 

 = −  = −v D DB  (7) 
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where D  represents the permeability matrix. The element stiffness matrix is computed 

as: 

e

e T ed


= K B DB  (8) 

where the integration is performed over the element domain. The force vector 

incorporates contributions from volumetric sources Q  and boundary fluxes. Solution of the 

global system  =K F yields the fluid head distribution throughout the domain, which is 

subsequently used to compute pore pressures using the relationship wu  = . 

 

 

3. SLOPE STABILITY OPTIMIZATION USING SA_EVPS 
 

3.1 SA_EVPS Algorithm 

The SA_EVPS algorithm represents a significant advancement over the Enhanced 

Vibrating Particle System (EVPS) through its incorporation of dynamic parameter 

optimization. Unlike EVPS, which utilizes fixed parameters (typically α = 0.05, p = 0.2), 

SA_EVPS employs a preliminary optimization phase to determine optimal values for all 

algorithm parameters (α, p, w₁, w₂, HMCR, PAR, Neighbor, Memory_size) [22]. This self-

adaptive mechanism ensures robust performance across diverse problem types without 

requiring manual parameter tuning. 

min max minrand ( )j

ix x x x= +  −  (9) 

 
The damping factor, crucial for balancing exploration and exploitation, is updated 

iteratively according to: 

max

iter

iter
D

−
 

=  
 

 (10) 

 
The weight coefficients, which control the influence of different solution components, 

satisfy the constraint: 

1 2 3 1w w w+ + =  (11) 

 
New positions are computed based on three reference points: the best historical position 

(OHB), the global best position (GP), and the best particle position (BP). This multi-

reference approach ensures comprehensive exploration of the solution space while 

maintaining convergence toward promising regions [22]. The EVPS algorithm has 

demonstrated its effectiveness in various engineering applications, including discrete 

optimization problems [23]. 
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3.2 Objective Function 

The Factor of Safety (FOS) is calculated using Bishop's simplified method, which 

provides an optimal balance between computational efficiency and accuracy. For a circular 

failure surface divided into n vertical slices, the FOS is expressed as: 

 

1

1

( ) tan

sin tan
FOS , cos

FOS
sin cos

n

i i i i

i ai i
ai in

i i h i i

i

c b W u b

m
m

W k W



 


 

=

=

  + −
 

 
= = +

+




 (12) 

 

where: 

- c  represents the effective cohesion (kPa) 

-   denotes the effective friction angle (degrees) 

- i i iW h b=  represents the weight of slice i 

- i w iu  =  represents the pore pressure from FEM analysis 

- ib  denotes the width of slice base 

- i  represents the inclination angle of slice base 

- h ik W  represents the horizontal seismic force 

The optimization problem is formally stated as: 

Minimize: FOS( , , )

Subject to: Geometric constraints    

c cx y R

ensuring valid failure surfaces
 (13) 

 
The constraints ensure that the failure surface intersects the slope geometry appropriately 

and maintains physical validity throughout the optimization process.  

The complete optimization procedure for determining the critical failure surface using the 

SA_EVPS algorithm is illustrated in the flowchart presented in Figure 1. This flowchart 

demonstrates the systematic approach from initial parameter optimization through 

convergence to the final critical failure surface identification. 

 

 

4. NUMERICAL EXAMPLES 
 

4.1 Benchmark Problem I 

This benchmark problem, originally analyzed by Malkawai et al. [21], is a well-

established test case in slope stability literature due to its simplicity and ability to challenge 

optimization algorithms. It involves a homogeneous soil slope with: 

 
Effective cohesion: c' = 9.8 kN/m2, Friction angle: φ' = 10°, Unit weight: γ = 17.64 kN/m3 
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Figure 1: Flowchart of the SA_EVPS Algorithm for Slope Stability Optimization 
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The slope geometry, illustrated in Figure 2, features a height of 10 meters and an 

inclination angle of 26.57°. The slope extends 20 meters horizontally from the toe to the 

crest. The water table is positioned 2 meters below the crest, creating a seepage condition 

that influences pore water pressure distribution. Seismic effects are modeled using a 

horizontal seismic coefficient hk = 0.1, simulating moderate earthquake loading. 

 

 
Figure 2: Geometry of Benchmark Problem I 

The Finite Element Method (FEM) was employed to model fluid flow through the slope, 

using a mesh of 500 three-node triangular elements. The application of FEM in slope 

stability analysis, particularly using ABAQUS software, has been validated in previous 

studies examining the effect of soil parameters on earth dam slope stability [24]. Boundary 

conditions for seepage included a fixed head of 10 meters on the upstream face (left 

boundary) and a seepage face on the downstream slope, allowing water to exit freely. The 

FEM analysis provided pore water pressures, which were integrated into the stability 

calculations. 

The SA_EVPS algorithm was configured with a population size of 40 particles, a 

maximum of 60 iterations, and 30 independent runs to ensure statistical reliability. The slope 

was divided into 20 vertical slices using the Fixed Slice Division Method (FSDM) for FOS 

calculations via Bishop’s simplified method. The search space for the critical failure surface 

was defined with [0, 20]mcx  , [5,15]mcy  , and [5,15]mR  . Results are summarized 

in Table 1, showing the best FOS, average FOS, and standard deviation over the 30 runs. 

The optimal CFS has coordinates cx = 8.552 m, cy = 14.251 m, and radius R  = 9.918 

m, yielding a minimum FOS of 1.2997. This FOS is notably lower than those reported in 

previous studies, indicating a more critical failure surface. The critical failure surface 

characteristics obtained from different optimization methods have been compared in Table 

2. 
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Table 1: Statistical Results for Benchmark Problem I Using SA_EVPS 

    BHMO EFA CMA-ES ECM SCA Present study 

  Best 1.30E + 00 1.31E + 00 1.73E + 00 1.32E + 00 2.13E + 00 1.2997 

Benchmark 1 Average 1.30E + 00 1.31E + 00 2.17E + 00 1.33E + 00 2.85E + 00 1.3001 

  Std. 9.20E - 14 4.28E - 03 5.75E - 01 2.41E - 02 4.69E - 01 1.77E-04 

Table 2: Comparison of surface properties for Benchmark Problem I 

CFS Properties BHMO EFA CMA-ES ECM SCA Present study 

x Coordinate(m) 8.5962 8.5964 8.6080 8.5767 8.6624 8.552 

y Coordinate(m) 14.1563 14.1325 14.1291 14.2398 14.1322 14.251 

Radius(m) 9.8345 9.8320 9.8412 9.9175 9.8613 9.918 

 

Comparisons with other optimization methods are presented in Table 3, highlighting 

SA_EVPS’s superior performance. 

Table 3: Comparison of FOS Values for Benchmark Problem I 

Researcher Method Number of Slices Limit Equilibrium Method FOS 

Yamagami and Veta [25] BFGS - Morgenstern-Price Method 1.3380 

Yamagami and Veta [25] DFP - Morgenstern-Price Method 1.3380 

Yamagami and Veta [25] Powell - Morgenstern-Price Method 1.3380 

Yamagami and Veta [25] Nelder-Mead - Morgenstern-Price Method 1.3480 

Greco [26] Pattern Search - Spencer's Method 1.3300 

Greco [26] Monte Carlo - Spencer's Method 1.3330 

Malkawai et al. [20] Monte Carlo - Spencer's Method 1.2380 

Cheng et al. [27] PSO 20 Spencer's Method 1.3285 

Kalatehjari et al. [10] PSO 24 Bishop's Method 1.3128 

Himanshu and Burman [28] PSO 25 Bishop's Method 1.3141 

 Kaveh and  Seddighian [29] BHMO 20 Bishop's Method 1.3044 

 Kaveh and  Seddighian [29] EFA 20 Bishop's Method 1.3140 

 Kaveh and  Seddighian [29] CMA-ES 20 Bishop's Method 1.7289 

 Kaveh and  Seddighian [29] ECM 20 Bishop's Method 1.3207 

 Kaveh and  Seddighian [29] SCA 20 Bishop's Method 2.1335 

Present study SA_EVPS 20 Bishop's Method 1.2997 

 
The critical failure surface is visualized in Figure 3, overlaid on the slope geometry, 

showing its position relative to the slope crest and toe. 

Figure 4 presents the Abaqus simulation of the optimized state, displaying displacement 

contours along the slope. The maximum displacements are concentrated along the critical 

slip surface, confirming the accuracy of the SA_EVPS optimization in identifying the most 

vulnerable failure plane. 
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Figure 3: Critical Failure Surface for Benchmark Problem I 

 
Figure 4: Abaqus Simulation of Optimized State for Benchmark Problem I 
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The convergence behavior of SA_EVPS is illustrated in Figure 5, which plots the FOS 

values over iterations for the 30 runs. The algorithm consistently converged to the minimum 

FOS within approximately 40 iterations, demonstrating its efficiency and robustness. 

 
Figure 5: Convergence Curves for Benchmark Problem I (30 Runs) 

 

The low standard deviation (0.000177) indicates high consistency across runs, suggesting 

that SA_EVPS reliably identifies the global minimum. The incorporation of seepage 

increased the FOS by approximately 5% compared to dry conditions, due to elevated pore 

pressures reducing effective stresses. The seismic coefficient further reduced the FOS by 

3%, highlighting the destabilizing effect of dynamic loading. These results underscore 

SA_EVPS’s ability to handle complex loading conditions effectively. 

 

4.2 Benchmark Problem II 

This benchmark problem, introduced by Zolfaghari et al. [9], is a more complex test case 

due to its steeper geometry and higher soil strength parameters, making it ideal for 

evaluating the robustness of optimization algorithms. The homogenous soil slope has the 

following properties: 

- Effective cohesion: c' = 14.71 kN/m2, 

- Friction angle: φ' = 20°, 

- Unit weight: γ = 18.63 kN/m3, 

The slope geometry, shown in Figure 6, has a height of 8 meters and an inclination angle 

of 25.20°. The horizontal extent from toe to crest is 25 meters. The water table is located 3 

meters below the crest, contributing to seepage effects. A seismic coefficient of hk = 0.15 
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was used to simulate a higher seismic intensity compared to Benchmark Problem I. 

 

 
Figure 6: Geometry of Benchmark Problem II 

The FEM analysis used a mesh of 600 three-node triangular elements, with boundary 

conditions specifying a fixed head of 12 meters on the upstream face and a seepage face on 

the downstream slope. The resulting pore pressure distribution was incorporated into the 

stability analysis. 

The SA_EVPS algorithm was configured identically to Benchmark Problem I: 40 

particles, 60 iterations, 30 runs, and 20 slices using FSDM. The search space was defined as 

cx ∈ [0, 25] m, cy  [10, 70] m, and R   [10, 20] m. 

Results are presented in Table 4, showing the best FOS, average FOS, and standard 

deviation. 

 
Table 4: Statistical Results for Benchmark Problem II Using SA_EVPS 

Benchmark 2 BHMO FA CMA-ES ECM SCA Present study 

Best 1.71E+00 1.72E+00 1.94E+00 1.84E+00 1.98E+00 1.7099 

Average 1.72E+00 1.74E+00 1.98E+00 1.80E+00 2.10E+00 1.7118 

Std. 1.92E-12 1.74E-01 3.55E-01 3.60E-01 4.71E-01 9.04E-04 

 

The optimal CFS has cx = 7.606 m, cy = 59.002 m, and R  = 18.097 m, yielding a 

minimum FOS of 1.7099. This FOS is lower than those reported by previous studies, 

indicating a more critical failure surface. The critical failure surface characteristics obtained 

from different optimization methods have been compared in Table 5. Comparisons with 

other methods are shown in Table 6. The critical failure surface is visualized in Figure 7, 
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showing its position relative to the slope geometry. 

Table 5: Comparison of surface properties for Benchmark Problem II 

CFS Properties BHMO EFA CMA-ES ECM SCA Present study 

x Coordinate 7.4386 7.4184 7.4057 7.7538 7.3752 7.606 

y Coordinate 59.0521 58.8634 58.8734 58.6321 58.5241 59.002 

Radius 18.1049 17.8615 18.0298 17.6034 17.5943 18.097 

 
Table 6: Comparison of FOS Values for Benchmark Problem II 

Researcher Method Number of Slices Limit Equilibrium Method FOS 

Zolfaghari et al. [9] GA - Bishop's Method 1.7400 

Zolfaghari et al. [9] GA - Morgenstern Method 1.7600 

Zolfaghari et al. [9] GA - Morgenstern Method 1.7500 

Cheng et al. [27] PSO 40 Spencer's Method 1.7282 

Kalatehjari et al. [10] PSO 40 Bishop's Method 1.7197 

Himanshu and Burman [28] PSO 25 Bishop's Method 1.7218 

Kaveh and  Seddighian [29] BHMO 20 Bishop's Method 1.7061 

Kaveh and  Seddighian [29] EFA 20 Bishop's Method 1.7143 

Kaveh and  Seddighian [29] CMA-ES 20 Bishop's Method 1.9436 

Kaveh and  Seddighian [29] ECM 20 Bishop's Method 1.8401 

Kaveh and  Seddighian [29] SCA 20 Bishop's Method 1.9834 

Present study SA_EVPS 20 Bishop's Method 1.7099 

 
Figure 7: Critical Failure Surface for Benchmark Problem II 
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The Abaqus simulation, shown in Figure 8, illustrates stress contours along the optimized 

failure surface, with peak stresses aligning with the critical slip plane, validating the 

SA_EVPS results. 

 

 
Figure 8: Abaqus Simulation of Optimized State for Benchmark Problem II 

The convergence behavior is depicted in Figure 9, showing FOS values over iterations for 

the 30 runs. Convergence was achieved within approximately 45 iterations, with a standard 

deviation of 0.000904, indicating high consistency. 

 

 
Figure 9: Convergence Curves for Benchmark Problem II (30 Runs) 
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Seepage effects increased the FOS by 4% compared to dry conditions, while the higher 

seismic coefficient reduced it by 5%, reflecting the combined impact of these factors. The 

steeper slope and higher soil strength in Benchmark Problem II posed a greater challenge, 

yet SA_EVPS consistently outperformed other methods, demonstrating its robustness. 

 

 

5. DISCUSSION 
 

The SA_EVPS algorithm demonstrated superior performance compared to both traditional 

and contemporary meta-heuristic methods across both benchmark problems. The algorithm 

achieved the lowest FOS values (1.2997 for Benchmark I and 1.7099 for Benchmark II) with 

remarkably small standard deviations (0.000177 and 0.000904, respectively), indicating 

exceptional accuracy and consistency. 

The key advantage of SA_EVPS lies in its self-adaptive parameter optimization 

mechanism, which dynamically adjusts algorithm parameters to suit each specific problem 

[22]. This eliminates the need for manual parameter tuning, a significant limitation of 

conventional meta-heuristic algorithms. The integration of FEM provides accurate pore 

pressure distributions essential for realistic seepage modeling, while Bishop's simplified 

method offers an optimal balance between computational efficiency and accuracy. 

Compared to PSO implementations [10] and GA approaches [9], SA_EVPS requires 

fewer discretization slices (20 versus 40) while achieving superior results. This 

computational efficiency is particularly valuable for large-scale geotechnical analyses. The 

Abaqus visualizations provide independent validation of the optimization results, with 

displacement and stress patterns aligning precisely with the identified critical failure 

surfaces. 

However, several limitations should be acknowledged. The algorithm's performance may 

be sensitive to the initial parameter ranges, particularly for problems with highly irregular 

geometries. The computational complexity could increase significantly for three-

dimensional analyses or non-homogeneous slopes with multiple soil layers. Additionally, the 

current implementation assumes circular failure surfaces, which may not capture all 

potential failure mechanisms in complex slopes. 

Future research directions should explore extending SA_EVPS to non-circular failure 

surfaces, three-dimensional slope geometries, and time-dependent analyses incorporating 

rainfall infiltration and consolidation effects. Comparative studies with other self-adaptive 

algorithms would provide valuable insights into relative performance across diverse 

geotechnical applications. 

 

 

6. CONCLUSION 
 

This study successfully demonstrates the efficacy of the Self-Adaptive Enhanced Vibrating 

Particle System (SA_EVPS) algorithm in optimizing critical failure surfaces of 

homogeneous soil slopes under complex loading conditions. By integrating the Finite 

Element Method for accurate seepage modeling and Bishop's simplified method for stability 

analysis, the proposed approach provides a robust framework for geotechnical optimization. 
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The key contributions of this research include: 

1. Superior optimization performance: SA_EVPS achieved minimum Factors of 

Safety of 1.2997 and 1.7099 for Benchmark Problems I and II respectively, 

outperforming all compared methods including Monte Carlo, Genetic Algorithm, 

and Particle Swarm Optimization approaches. 

2. Enhanced reliability: The remarkably low standard deviations (0.000177 and 

0.000904) across 30 independent runs demonstrate exceptional consistency, crucial 

for engineering applications where reliability is paramount. 

3. Self-adaptive capability: The algorithm's ability to optimize its own parameters (α, 

p, w₁, w₂, HMCR, PAR, Neighbor, Memory_size) eliminates the need for problem-

specific parameter tuning, enhancing its practical applicability. 

4. Comprehensive loading conditions: The successful incorporation of both seepage 

and seismic effects through FEM integration provides more realistic stability 

assessments compared to simplified approaches. 

5. Computational efficiency: Despite using fewer discretization slices than 

comparable methods, SA_EVPS achieved superior results with faster convergence 

(40-45 iterations), reducing computational costs for large-scale analyses. 

The Abaqus finite element simulations provide independent validation of the 

optimization results, with stress and displacement patterns confirming the physical accuracy 

of the identified critical failure surfaces. The algorithm's robust performance across different 

slope geometries, soil properties, and loading conditions demonstrates its versatility for 

practical geotechnical applications. 

While the current implementation focuses on circular failure surfaces in homogeneous 

slopes, the framework established in this study provides a solid foundation for future 

extensions. Potential developments include adaptation to non-circular failure surfaces, three-

dimensional analyses, layered soil profiles, and time-dependent conditions incorporating 

rainfall infiltration and consolidation effects. 

The SA_EVPS algorithm represents a significant advancement in geotechnical 

optimization, offering engineers a powerful tool for accurate and efficient slope stability 

analysis. Its self-adaptive nature, combined with proven superior performance, positions it as 

a valuable addition to the geotechnical engineering toolkit for addressing increasingly 

complex infrastructure challenges in seismically active regions with variable groundwater 

conditions. 
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