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ABSTRACT  
 

This study employs Monte Carlo simulation together with a deep feedforward neural network 

to predict the natural frequencies of truss domes under uncertainty. Material and/or geometric 

properties of these structures are modeled as random variables, and their influence on the 

natural frequencies is examined. Monte Carlo simulation is applied to perform stochastic 

eigenvalue analyses of the finite element models. To reduce computational cost, a deep neural 

network is trained to predict natural frequencies in place of repeated eigenvalue solves, 

accelerating the overall simulation. Bayesian optimization is used to tune the network 

hyperparameters. Numerical examples show that the proposed approach substantially 

improves computational efficiency and predictive accuracy compared with direct Monte Carlo 

simulation for domes with random inputs. 
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1. INTRODUCTION  
 

Uncertainty plays a significant role in the analysis and design of structural systems, making 

probabilistic approaches essential. As a result, numerous techniques have been developed to 
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quantify uncertainties in structural models [1-3] . Among these, Monte Carlo simulation 

(MCS) is a widely recognized method for probabilistic analysis. It operates as a sampling 

technique, generating numerous realizations based on randomly selected values for uncertain 

parameters. MCS has been extensively applied in reliability assessments of structures [4, 5]. 

Despite its robustness, MCS is computationally intensive, as each realization requires a full 

structural analysis, which can be time-consuming. To address this limitation, alternative 

sampling strategies or surrogate models (such as those based on machine learning) can be 

employed to reduce computational demands. Furthermore, techniques like Latin hypercube 

sampling or importance sampling can lower the required number of samples, while machine 

learning models serve as efficient surrogates for the original structural model. 

With the rapid advancement of computer technology, machine learning has found 

widespread application across various domains. Today, machine learning techniques are 

extensively applied across fields such as computational mechanics [6, 7]; material modeling 

[8]; structural optimization [9, 10]; error-resilient system design [11-13]; and electric power 

system analysis [14]. Nevertheless, the primary application areas of machine learning in 

structural mechanics include modeling of structural materials, seismic response prediction, 

wind-load estimation, structural health monitoring, structural optimization, damage detection 

and localization, and structural control [8, 9, 15-18].  

In recent years, deep neural network surrogates have been developed to reduce the 

computational burden of finite element analysis [8, 19, 20]. For example, Mai et al. [21] 

trained a deep neural network on data from finite element analysis and integrated it with a 

differential evolution algorithm to efficiently optimize geometrically nonlinear space trusses 

under displacement constraints. In a separate study [22], a robust framework was proposed 

that parameterizes truss cross‐sectional areas through weights and biases of a deep neural 

network—using joint coordinates as inputs—and embeds this surrogate within a Bayesian 

optimization loop to directly identify minimum‐weight designs under displacement 

constraints. 

Representing uncertainty in natural frequencies is essential for analyzing the dynamic 

behavior of structural systems [23]. When adequate statistical data is available, stochastic 

approaches are commonly employed to account for uncertainties. These methods typically 

model uncertainties as random variables, stochastic processes, or random fields. The 

characterization of uncertainty is often expressed through parameters such as probability 

density functions, mean values, and variances. However, in cases where the probability 

density function is unknown or insufficiently defined, uncertainty can alternatively be 

represented using interval bounds that specify the upper and lower limits of the random 

variables.  

The natural frequencies of structures with uncertain parameters are typically determined by 

solving random eigenvalue problems. Scheidt and Purker [24] conducted foundational 

research in this area.  Several methodologies have been developed to address these problems, 

including the direct MCS approach [25], and the perturbation method [23]. Hollot and Bartlett 

[26] explored the eigenvalues of interval matrices, while Chen et al. [27] introduced 

perturbation techniques for estimating the bounds of eigenvalues in vibrating systems with 

interval-based parameters. Qiu et al. [28] applied the vertex theorem to compute eigenvalue 

bounds for structures characterized by uncertain-but-bounded parameters. Gao [29] proposed 

the interval factor method for analyzing the natural frequencies and mode shapes of structures 
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with interval uncertainties. Modares et al. [30] developed an element-by-element formulation 

to address interval eigenvalue problems, and Angeli et al. [31] investigated frequency intervals 

in systems exhibiting polytopic uncertainty. Recently, support vector machines were 

employed in MCS to accelerate the computation of eigenvalues for truss structures with 

uncertain parameters [32]. Furthermore, numerous studies have focused on stochastic 

modeling to evaluate the dynamic behavior of structures under uncertainty. However, practical 

structural systems often involve a large number of variables and design parameters, some of 

which possess adequate statistical data while others do not. Consequently, a combined use of 

stochastic and interval models becomes necessary. In this context, various efforts have been 

made to solve mixed stochastic problems in both static [33, 34] and dynamic [35] analyses.  

In this study, MCS is employed to compute the natural frequencies of truss domes under 

uncertainty. A set of random variables is included in the MCS to perform a stochastic 

eigenvalue analysis of the system. To enhance simulation efficiency, a deep feedforward 

neural network (DFNN) is trained to predict natural frequencies, enabling faster execution of 

each MCS iteration. This network is used as a surrogate model, replacing the finite element 

eigenvalue analysis of the structure. We perform hyperparameter tuning on this network, for 

which Bayesian optimization is used to identify the best settings. The proposed approach is 

evaluated on two examples, demonstrating its computational efficiency and accuracy 

compared with direct MCS. 

The rest of this paper is organized as follows. Section 2 reviews the research background 

of deep neural networks. Section 3 outlines eigenvalue analysis for determining the natural 

frequencies of truss structures and introduces the proposed approach. Section 4 presents 

illustrative examples, and Section 5 offers the conclusions. 

 

 

2. DEEP FEEDFORWARD NEURAL NETWORK (DFNN) 
 

A feedforward neural network, also known as a fully connected neural network, is among the 

earliest models developed in artificial intelligence [36]. The multilayer perceptron (MLP) is a 

variant of the feedforward neural network. It consists of three primary layers: the input layer, 

the hidden layer, and the output layer, as illustrated in Figure 1. The input layer receives the 

incoming signal, while the output layer performs tasks such as classification and prediction. 

Between these two layers lies a series of hidden layers, which may extend indefinitely and are 

fully connected. In an MLP, data flows unidirectionally from the input to the output layer, 

following the feedforward architecture. The network is trained using the backpropagation 

algorithm, which adjusts the weights of all nodes. MLPs are capable of solving problems that 

are not linearly separable and are designed to approximate any continuous function. Multi-

layer neural networks establish mathematical mappings between inputs and outputs by 

iteratively tuning weights and biases during training. A network with a single hidden layer is 

termed shallow, while architectures with two or more hidden layers are known as deep neural 

networks. Figure 1 depicts the fully connected architecture of the network, comprising an 

input layer, (N − 1) hidden layers, and an output layer. Each neuron in layer (i) receives signals 

from all neurons in layer (i – 1) via a weight matrix ( )i
W  and a bias vector ( )i

b . The layer 

outputs are computed as 
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where If  and Of  are the activation functions for the hidden and output layers, respectively; 

ŷ represents  the output vector, while the input vector is denoted as (0) =h x . 

 

 
Figure 1: Schematic representation of a deep feedforward neural network [21]. 

 

In this section, a surrogate model is developed using a DFNN to predict eigenvalues of 

dome structures, so that eigenvalue analysis is replaced by the trained DFNN. Therefore, MCS 

with the DFNN performs much faster than MCS using the actual eigenvalue analysis, while 

providing an approximate solution. The three main components of generating the surrogate 

model using the DFNN are summarized as follows: 

(1) A set of samples is generated using Latin Hypercube Sampling for the uncertain 

parameters, such as Young’s modulus, mass density, and cross-sectional areas. An 

eigenvalue analysis is carried out for each sample to collect the required natural 

frequency responses. All input and output variables are normalized before being 

fed into the neural network. 

(2) A DFNN is developed and trained to approximate the relationship between the 

inputs and the natural frequencies.  

(3) The eigenvalue analysis is replaced by the DFNN surrogate to predict the natural 

frequencies.  

In supervised learning, labeled data guide the optimization of weights and biases by 

minimizing a loss function. For regression tasks, the mean squared error (MSE) is widely 

used, defined as 
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where jy and ˆ
jy  denote the observed (true) and predicted outputs for the jth data point, and 

n is the total number of scalar predictions, i.e., the number of samples multiplied by the 

number of output units. 

Before training, inputs and targets (outputs) are standardized using z-score normalization. 

This normalization procedure expresses each value’s distance from the mean in units of the 

standard deviation, producing a dataset with mean 0 and standard deviation 1 while preserving 

the original distribution’s shape, skewness, and kurtosis. Standardization improves 

optimization stability and accelerates convergence. To further speed training and reduce 

variance in gradient estimates, the dataset is split into mini-batches and parameters are updated 

batch-wise using mini-batch gradient descent rather than using the full dataset or individual 

samples. 

Choosing appropriate activation functions, commonly rectified linear unit (ReLU) or 

sigmoid, allows the network to model nonlinear relationships and improves regression 

accuracy. In this study, each hidden block contains three layers: a fully connected layer, a 

batch normalization layer, and a ReLU activation. The ReLU applies a nonlinear threshold by 

setting negative inputs to zero and leaving positive inputs unchanged. 

Backpropagation uses the gradient of the loss function to iteratively update every weight 

and bias. Over the years, researchers have proposed optimizers such as SGD, Adagrad, 

Adadelta, and RMSprop. Adam, which combines Adagrad-style per-parameter learning rates 

with RMSprop-style momentum, has emerged as a robust choice for training on nonconvex 

problems [21, 37]. Recent studies demonstrate deep learning’s effectiveness in structural 

analysis and optimization [8, 22, 38], so we adopt Adam to train our DFNN on the available 

data. 

Optimization generally seeks the point that minimizes or maximizes a real-valued objective 

function. Bayesian optimization is one such approach. It builds and updates a Gaussian 

process surrogate of the objective using past function evaluations. An acquisition function 

then guides the choice of the next evaluation by balancing exploitation of regions with low 

predicted objective values and exploration of poorly modeled regions. Bayesian optimization 

is widely used for hyperparameter tuning of machine learning algorithms [39]. In this paper, 

the DFNN hyperparameters are tuned using Bayesian optimization to minimize the MSE 

under the given parameter bounds. 

 

 

3. ANALYSIS OF VIBRATION FREQUENCIES 
 

In this section, first, the vibration frequency analysis of truss structures is reviewed, followed 

by a discussion of probabilistic analysis using Monte Carlo simulation and deep neural 

networks. 
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3.1. Eigenvalue analysis  

To compute a structure’s natural frequencies, one must solve the eigenvalue problem 

involving its stiffness and mass matrices [40-42]. The stiffness matrix for a three-dimensional 

truss element is then given by: 
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where e
k  denotes the stiffness matrix of the truss element connecting nodes i and j;  L, A 

and E are the element length, cross- sectional area, and Young’s modulus, respectively; xi , yi  

and zi  are the Cartesian coordinates of node i. The element stiffness matrices are assembled 

into K . 

The consistent mass matrix for a three-dimensional truss element is expressed as 
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in which   represents the material density. The element mass matrices are assembled into 

structM , which contains the structural mass, while nonstructural masses, if present, are 

represented by a lumped mass matrix denoted as nonstructM ; thus the total mass matrix is 

struct nonstruct= +M M M , and if no nonstructural masses exist then struct=M M . 

Using the assembled stiffness and mass matrices, the global eigenvalue problem becomes: 

 
2

k k k  =K M  (6) 
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where M and K denote the mass and stiffness matrices of the structure, respectively; k  

and k  represent the kth circular frequency and its corresponding mode shape vector, 

respectively. 

 

3.2. The MCS-DFNN procedure  

To estimate the statistical measures of uncertain structural responses, MCS employs 

repeated random sampling based on prescribed probability distributions. In this approach, 

each uncertain variable is modeled by a probability distribution, and the simulation 

recalculates the output repeatedly, using a new set of random samples each time. Three key 

steps define the MCS workflow: 

 

• Identify the predictive model by specifying independent variables (random inputs) 

and the dependent variable (response of interest). 

• Assign probability distributions to the independent variables, drawing on historical 

data or expert judgment, then generate random samples accordingly. 

• Run simulations for a predefined number of samples—solving, for example, a 

deterministic eigenvalue problem for each realization—until the desired accuracy of 

response statistics (e.g., mean, standard deviation) is achieved. 

 

Although MCS is straightforward and robust for stochastic structural mechanics, its 

accuracy hinges on the number of samples: the standard deviation error decreases with the 

square root of the sample size. Consequently, large-scale systems with many random 

parameters incur high computational costs due to the sheer volume of deterministic solves. To 

alleviate this burden, we replace the direct eigenvalue analyses with a DFNN surrogate, 

yielding an MCS-DFNN framework. The procedure unfolds as follows: 

 

• Construct a dataset of observations pairing input random variables (features) with 

their resulting natural frequencies (targets). Each training sample represents one set 

of random structural parameters and the corresponding frequency. 

• Train a DFNN regression model on this dataset to learn the mapping from input 

parameters to natural frequencies. 

• Perform MCS without invoking structural eigenvalue solvers in each iteration. 

Instead, feed each random sample into the trained DFNN to predict natural 

frequencies, dramatically reducing per-sample computational cost. 

 

This MCS-DFNN approach maintains the statistical rigor of conventional MCS while 

achieving substantial speed-ups for stochastic eigenvalue analysis of the dome structures. 

 

 

4. ILLUSTRATIVE EXAMPLES  
 

Two truss-dome examples are analyzed to demonstrate the accuracy and efficiency of the 

proposed MCS-DFNN method for computing natural frequencies of lower vibration modes. 

For each example, results from the direct MCS and the proposed MCS-DFNN approach are 
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compared in terms of solution accuracy and computational cost. In the MCS approach, an 

eigenvalue analysis is performed for every sample, whereas the MCS-DFNN replaces the per-

sample eigenvalue computation with predictions from a DFNN. The MCS is carried out using 

a total of 20,000 samples. For DFNN training, the dataset of size N is randomly partitioned 

into training (70%), validation (15%), and testing (15%) subsets; data points are generated by 

eigenvalue analyses of the structure under different realizations of the random variables. The 

LHS was utilized to create efficiently distributed data points. 

Hyperparameter tuning is performed for each example using Bayesian optimization over 

60 objective-function evaluations to optimize the number of hidden layers, number of neurons 

per hidden layer, initial learning rate, decay rate for first-moment (mean) of gradients, decay 

rate for second-moment (squared gradients), and L2 regularization coefficient (weight decay). 

The search ranges for these variables are reported in Table 1. The fixed training 

hyperparameters are set as maximum number of epochs = 80, minimum batch size = 64, 

learning-rate drop factor = 0.1, and learning-rate drop period = 20. The model is trained using 

the Adam optimizer. All computations are carried out on a laptop with an Intel Core i7-

7700HQ CPU at 2.80 GHz and 16 GB of RAM. 

 
Table 1: Range of hyperparameter values used for tuning the deep feedforward neural network. 

Variable  Type  Range  

Number of hidden layers Integer [1, 5] 

Number of neurons per hidden layer Integer [8, 64] 

Initial learning rate  Real  [10-4, 10-2] 

Gradient decay factor Real [0.8, 0.95] 

Squared gradient decay factor Real [0.98, 0.999] 

L2 regularization coefficient Real [10-5, 10-3] 

 

4.1. A 600-bar dome 

A single-layer truss dome from Refs. [32, 43] is shown in Figure 2. The dome has a span 

of 28 m and a height of 7.5 m. It comprises 216 nodes and 600 members formed by cyclic 

replication of a 9-node, 25-member substructure; the angular increment between consecutive 

substructures is 15°, producing 24 identical sectors. The mean cross-sectional area, Young’s 

modulus, and material density for all members are 2×10-3 m2, 2×105 MPa, and 7850 kg/m3, 

respectively. All ground-level nodes are simply supported. Cross-sectional area, Young’s 

modulus, and mass density are modeled as identically distributed normal random variables 

across members with coefficients of variation 0.16, 0.1, and 0.1, respectively 

Six natural frequencies are required. Thus, a dataset of size 1000 is generated using 

eigenvalue analyses corresponding to 1000 samples of the dome structure; each sample 

includes three input features (cross-sectional area, Young’s modulus, and mass density) and 

six outputs. Using Bayesian optimization, a DFNN is trained 60 times with varying 
hyperparameters to find the best set from the list of optimization variables given in Table 1. 

The optimized parameters are provided in Table 2, and the convergence curves are shown in 

Figure 3. One curve plots the observed values, i.e., the best objective value actually obtained 

by evaluating the true objective to date (the incumbent minimum from real function 

evaluations). The other curve plots the estimated values, i.e., the optimizer’s current belief 
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about the minimum based on the Gaussian process surrogate (the surrogate’s predicted best 

objective derived from the Gaussian process posterior and the acquisition strategy). 

True (observed) and predicted values for the first six natural frequencies are plotted in 

Figure 4, demonstrating that these values closely match and that the trained DFNN performs 

well. The R2 and RMSE values are also shown in Figure 4 to indicate the solution accuracy. 

Furthermore, Table 3 lists the means, standard deviations, and computational times for the 

MCS and MCS-DFNN approaches. The MCS-DFNN method is substantially faster than direct 

MCS, while producing mean and standard-deviation estimates that closely match the MCS 

results. Table 3 also confirms that errors increase for higher modes, as expected when 

comparing the frequency accuracy across modes resulting from a trained network. 

 
Figure 2: A 600-bar truss dome. 

 
Figure 3: Convergence curves for Bayesian optimization applied to hyperparameter tuning of the 

deep feedforward neural network for the 600-bar truss dome. 
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Figure 4: The observed and predicted natural frequencies of the 600-bar truss dome.  

Table 2: Optimized hyperparameters of the deep feedforward neural network used to predict the 

natural frequencies of the 600-bar truss dome. 

Variable  Value  

Number of hidden layers 4 

Number of neurons per hidden layer 62 

Initial learning rate  0.0078 

Gradient decay factor 0.9449 

Squared gradient decay factor 0.9825 

L2 regularization coefficient 1.4739×10-4 

 

Table 3: Mean and standard deviation of the natural frequencies for the 600-bar truss dome 

obtained with MCS and MCS-DFNN. 

Natural frequency 

(Hz) 

MCS MCS-DFNN 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

f1 12.5542 0.8957 12.5575 0.8887 

f2 12.5542 0.8957 12.5548 0.8829 

f3 13.5409 0.9661 13.5394 0.9494 

f4 13.5409 0.9661 13.5453 0.9578 

f5 16.1057 1.1491 16.1090 1.1413 

f6 16.1057 1.1491 16.1105 1.1428 

Elapsed time (s) 1.3962×103   4.4012 

 

4.2. A 1180-bar dome 

A truss dome with 400 nodes and 1180 members is considered in this example, as shown 

in Figure 5. The dome is generated by cyclically replicating a substructure of 20 nodes and 59 
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members, with an 18° angle between consecutive substructures. Each free node has a 

nonstructural mass of 100 kg. This is a benchmark example in structural optimization [44-46], 

but here we use it to obtain the first three natural frequencies, treating the 59 members’ cross-

sectional areas of the substructure as uniformly distributed random variables in the range 

[0.001, 0.005] m2. Young’s modulus and mass density are deterministic, taken as 2×105 MPa 

and 7850 kg/m3, respectively. Geometry details and member grouping of the structure can be 

found in Ref. [46]. 

A dataset of 6000 samples is generated, each sample containing the 59 cross-sectional area 

values as inputs and three natural frequencies as targets. Using Bayesian optimization, a 

DFNN is trained 60 times over the hyperparameter sets listed in Table 1 to identify the best 

set. The optimized parameters appear in Table 4, and the convergence curves are presented in 

Figure 6. Figure 7 compares true (observed) and predicted values of the natural frequencies, 

showing close agreement and desirable DFNN performance. Table 5 reports the means, 

standard deviations, and computational times for the MCS and MCS-DFNN approaches. The 

MCS-DFNN approach is substantially faster than direct MCS and yields mean and standard-

deviation estimates that largely match the MCS results; however, agreement is less exact than 

in the previous example because this problem has many more input variables (see also the R² 

and RMSE values in Figure 7). 

 
Figure 5: A 1180-bar truss dome. 

Table 4: Optimized hyperparameters of the deep feedforward neural network used to predict the 

natural frequencies of the 1180-bar truss dome. 

Variable  Value  

Number of hidden layers 5 

Number of neurons per hidden layer 64 

Initial learning rate  0.0096 

Gradient decay factor 0.9239 

Squared gradient decay factor 0.9869 

L2 regularization coefficient 9.8338×10-4 
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Figure 6: Convergence curves for Bayesian optimization applied to hyperparameter tuning of the 

deep feedforward neural network for the 1180-bar truss dome. 

 

 
Figure 7: The observed and predicted natural frequencies of the 1180-bar truss dome.  
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Table 5: Mean and standard deviation of the natural frequencies for the 1180-bar truss dome 

obtained with MCS and MCS-DFNN. 

Natural frequency 

(Hz) 

MCS MCS-DFNN 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

f1 5.7493 0.3152 5.7513 0.3056 

f2 5.7493 0.3152 5.7513 0.3058 

f3 9.6177 0.6126 9.6220 0.5893 

Elapsed time (s) 3.9284×103 48.1163 

 

 

5. CONCLUDING REMARKS  
 

In this paper, Monte Carlo simulation (MCS) combined with a deep feedforward neural 

network (DFNN) is used to predict the natural frequencies of truss structures with uncertain 

parameters. The uncertain parameters—Young’s modulus, mass density, and cross-sectional 

area—are modeled as random variables with uniform or normal distributions. The stochastic 

eigenvalue problem arising from these random parameters is sampled with MCS to obtain 

realizations of the natural frequencies. To reduce the high computational cost of repeatedly 

solving eigenvalue problems within the MCS, a DFNN surrogate predicts the eigenvalues for 

each sample, replacing the full eigenvalue analysis. The DFNN is trained using far fewer full-

order simulations than the total number of Monte Carlo samples, enabling efficient prediction 

of natural frequencies. Bayesian optimization is used to tune the DFNN hyperparameters and 

improve its performance. The examples of truss domes, featuring different randomized 

parameters, demonstrate the accuracy and speed of the proposed MCS-DFNN approach 

compared with direct MCS. Results show that MCS-DFNN achieves comparable solution 

accuracy while substantially reducing computational time, with the cost savings becoming 

especially pronounced for large-scale structures. The MCS-DFNN framework is general and 

can be extended to stochastic eigenvalue analyses of other structural systems. 
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