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ABSTRACT

This study employs Monte Carlo simulation together with a deep feedforward neural network
to predict the natural frequencies of truss domes under uncertainty. Material and/or geometric
properties of these structures are modeled as random variables, and their influence on the
natural frequencies is examined. Monte Carlo simulation is applied to perform stochastic
eigenvalue analyses of the finite element models. To reduce computational cost, a deep neural
network is trained to predict natural frequencies in place of repeated eigenvalue solves,
accelerating the overall simulation. Bayesian optimization is used to tune the network
hyperparameters. Numerical examples show that the proposed approach substantially
improves computational efficiency and predictive accuracy compared with direct Monte Carlo
simulation for domes with random inputs.
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1. INTRODUCTION

Uncertainty plays a significant role in the analysis and design of structural systems, making
probabilistic approaches essential. As a result, numerous techniques have been developed to
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quantify uncertainties in structural models [1-3] . Among these, Monte Carlo simulation
(MCS) is a widely recognized method for probabilistic analysis. It operates as a sampling
technique, generating numerous realizations based on randomly selected values for uncertain
parameters. MCS has been extensively applied in reliability assessments of structures [4, 5].
Despite its robustness, MCS is computationally intensive, as each realization requires a full
structural analysis, which can be time-consuming. To address this limitation, alternative
sampling strategies or surrogate models (such as those based on machine learning) can be
employed to reduce computational demands. Furthermore, techniques like Latin hypercube
sampling or importance sampling can lower the required number of samples, while machine
learning models serve as efficient surrogates for the original structural model.

With the rapid advancement of computer technology, machine learning has found
widespread application across various domains. Today, machine learning techniques are
extensively applied across fields such as computational mechanics [6, 7]; material modeling
[8]; structural optimization [9, 10]; error-resilient system design [11-13]; and electric power
system analysis [14]. Nevertheless, the primary application areas of machine learning in
structural mechanics include modeling of structural materials, seismic response prediction,
wind-load estimation, structural health monitoring, structural optimization, damage detection
and localization, and structural control [8, 9, 15-18].

In recent years, deep neural network surrogates have been developed to reduce the
computational burden of finite element analysis [8, 19, 20]. For example, Mai et al. [21]
trained a deep neural network on data from finite element analysis and integrated it with a
differential evolution algorithm to efficiently optimize geometrically nonlinear space trusses
under displacement constraints. In a separate study [22], a robust framework was proposed
that parameterizes truss cross-sectional areas through weights and biases of a deep neural
network—using joint coordinates as inputs—and embeds this surrogate within a Bayesian
optimization loop to directly identify minimum-weight designs under displacement
constraints.

Representing uncertainty in natural frequencies is essential for analyzing the dynamic
behavior of structural systems [23]. When adequate statistical data is available, stochastic
approaches are commonly employed to account for uncertainties. These methods typically
model uncertainties as random variables, stochastic processes, or random fields. The
characterization of uncertainty is often expressed through parameters such as probability
density functions, mean values, and variances. However, in cases where the probability
density function is unknown or insufficiently defined, uncertainty can alternatively be
represented using interval bounds that specify the upper and lower limits of the random
variables.

The natural frequencies of structures with uncertain parameters are typically determined by
solving random eigenvalue problems. Scheidt and Purker [24] conducted foundational
research in this area. Several methodologies have been developed to address these problems,
including the direct MCS approach [25], and the perturbation method [23]. Hollot and Bartlett
[26] explored the eigenvalues of interval matrices, while Chen et al. [27] introduced
perturbation techniques for estimating the bounds of eigenvalues in vibrating systems with
interval-based parameters. Qiu et al. [28] applied the vertex theorem to compute eigenvalue
bounds for structures characterized by uncertain-but-bounded parameters. Gao [29] proposed
the interval factor method for analyzing the natural frequencies and mode shapes of structures
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with interval uncertainties. Modares et al. [30] developed an element-by-element formulation
to address interval eigenvalue problems, and Angeli et al. [31] investigated frequency intervals
in systems exhibiting polytopic uncertainty. Recently, support vector machines were
employed in MCS to accelerate the computation of eigenvalues for truss structures with
uncertain parameters [32]. Furthermore, numerous studies have focused on stochastic
modeling to evaluate the dynamic behavior of structures under uncertainty. However, practical
structural systems often involve a large number of variables and design parameters, some of
which possess adequate statistical data while others do not. Consequently, a combined use of
stochastic and interval models becomes necessary. In this context, various efforts have been
made to solve mixed stochastic problems in both static [33, 34] and dynamic [35] analyses.

In this study, MCS is employed to compute the natural frequencies of truss domes under
uncertainty. A set of random variables is included in the MCS to perform a stochastic
eigenvalue analysis of the system. To enhance simulation efficiency, a deep feedforward
neural network (DFNN) is trained to predict natural frequencies, enabling faster execution of
each MCS iteration. This network is used as a surrogate model, replacing the finite element
eigenvalue analysis of the structure. We perform hyperparameter tuning on this network, for
which Bayesian optimization is used to identify the best settings. The proposed approach is
evaluated on two examples, demonstrating its computational efficiency and accuracy
compared with direct MCS.

The rest of this paper is organized as follows. Section 2 reviews the research background
of deep neural networks. Section 3 outlines eigenvalue analysis for determining the natural
frequencies of truss structures and introduces the proposed approach. Section 4 presents
illustrative examples, and Section 5 offers the conclusions.

2. DEEP FEEDFORWARD NEURAL NETWORK (DFNN)

A feedforward neural network, also known as a fully connected neural network, is among the
earliest models developed in artificial intelligence [36]. The multilayer perceptron (MLP) is a
variant of the feedforward neural network. It consists of three primary layers: the input layer,
the hidden layer, and the output layer, as illustrated in Figure 1. The input layer receives the
incoming signal, while the output layer performs tasks such as classification and prediction.
Between these two layers lies a series of hidden layers, which may extend indefinitely and are
fully connected. In an MLP, data flows unidirectionally from the input to the output layer,
following the feedforward architecture. The network is trained using the backpropagation
algorithm, which adjusts the weights of all nodes. MLPs are capable of solving problems that
are not linearly separable and are designed to approximate any continuous function. Multi-
layer neural networks establish mathematical mappings between inputs and outputs by
iteratively tuning weights and biases during training. A network with a single hidden layer is
termed shallow, while architectures with two or more hidden layers are known as deep neural
networks. Figure 1 depicts the fully connected architecture of the network, comprising an
input layer, (N — 1) hidden layers, and an output layer. Each neuron in layer (i) receives signals
from all neurons in layer (i — 1) via a weight matrix W and a bias vector b"”’. The layer
outputs are computed as
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h® = £, (WPh™ +b?), Vi=12,.,(N-1)
(1)
y=1, (W(N)h(N‘” +b(N)),

where f, and f, are the activation functions for the hidden and output layers, respectively;

¥ represents the output vector, while the input vector is denoted as h'” =x .

Input layer Hidden layers Output layer

Figure 1: Schematic representation of a deep feedforward neural network [21].

In this section, a surrogate model is developed using a DFNN to predict eigenvalues of
dome structures, so that eigenvalue analysis is replaced by the trained DFNN. Therefore, MCS
with the DFNN performs much faster than MCS using the actual eigenvalue analysis, while
providing an approximate solution. The three main components of generating the surrogate
model using the DFNN are summarized as follows:

(1) A set of samples is generated using Latin Hypercube Sampling for the uncertain
parameters, such as Young’s modulus, mass density, and cross-sectional areas. An
eigenvalue analysis is carried out for each sample to collect the required natural
frequency responses. All input and output variables are normalized before being
fed into the neural network.

(2) A DFNN is developed and trained to approximate the relationship between the
inputs and the natural frequencies.

(3) The eigenvalue analysis is replaced by the DFNN surrogate to predict the natural
frequencies.

In supervised learning, labeled data guide the optimization of weights and biases by
minimizing a loss function. For regression tasks, the mean squared error (MSE) is widely
used, defined as
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where y and y; denote the observed (true) and predicted outputs for the jth data point, and

n is the total number of scalar predictions, i.e., the number of samples multiplied by the
number of output units.

Before training, inputs and targets (outputs) are standardized using z-score normalization.
This normalization procedure expresses each value’s distance from the mean in units of the
standard deviation, producing a dataset with mean 0 and standard deviation 1 while preserving
the original distribution’s shape, skewness, and kurtosis. Standardization improves
optimization stability and accelerates convergence. To further speed training and reduce
variance in gradient estimates, the dataset is split into mini-batches and parameters are updated
batch-wise using mini-batch gradient descent rather than using the full dataset or individual
samples.

Choosing appropriate activation functions, commonly rectified linear unit (ReLU) or
sigmoid, allows the network to model nonlinear relationships and improves regression
accuracy. In this study, each hidden block contains three layers: a fully connected layer, a
batch normalization layer, and a ReLU activation. The ReLU applies a nonlinear threshold by
setting negative inputs to zero and leaving positive inputs unchanged.

Backpropagation uses the gradient of the loss function to iteratively update every weight
and bias. Over the years, researchers have proposed optimizers such as SGD, Adagrad,
Adadelta, and RMSprop. Adam, which combines Adagrad-style per-parameter learning rates
with RMSprop-style momentum, has emerged as a robust choice for training on nonconvex
problems [21, 37]. Recent studies demonstrate deep learning’s effectiveness in structural
analysis and optimization [8, 22, 38], so we adopt Adam to train our DFNN on the available
data.

Optimization generally seeks the point that minimizes or maximizes a real-valued objective
function. Bayesian optimization is one such approach. It builds and updates a Gaussian
process surrogate of the objective using past function evaluations. An acquisition function
then guides the choice of the next evaluation by balancing exploitation of regions with low
predicted objective values and exploration of poorly modeled regions. Bayesian optimization
is widely used for hyperparameter tuning of machine learning algorithms [39]. In this paper,
the DFNN hyperparameters are tuned using Bayesian optimization to minimize the MSE
under the given parameter bounds.

3. ANALYSIS OF VIBRATION FREQUENCIES

In this section, first, the vibration frequency analysis of truss structures is reviewed, followed
by a discussion of probabilistic analysis using Monte Carlo simulation and deep neural
networks.
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3.1. Eigenvalue analysis

To compute a structure’s natural frequencies, one must solve the eigenvalue problem
involving its stiffness and mass matrices [40-42]. The stiffness matrix for a three-dimensional
truss element is then given by:

C? C.C, C.C. -C? -C.C, -C.C.
2 2
(O C,C, -C.C, -C; -C,C,
C? -C.C -C.C -C?
k(f — E_A z .\'2 z y z z (3)
L C. C.C, C.C.
2
(O C,C.
Symmetric C:
with
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ot A R o R R Y i )
” L g L L

where k° denotes the stiffness matrix of the truss element connecting nodes i and j; L, 4
and E are the element length, cross- sectional area, and Young’s modulus, respectively; x; , yi
and z; are the Cartesian coordinates of node i. The element stiffness matrices are assembled
into K.

The consistent mass matrix for a three-dimensional truss element is expressed as

2001 0 0]
020010
me:p_AL00200 5)
6 /1 00200
010020
001 0 0 2]

in which p represents the material density. The element mass matrices are assembled into
M which contains the structural mass, while nonstructural masses, if present, are

struct >

: thus the total mass matrix is

nonstruct ?

represented by a lumped mass matrix denoted as M
M=M__ +M

struct

and 1f no nonstructural masses exist then M =M

nonstruct > struct *

Using the assembled stiffness and mass matrices, the global eigenvalue problem becomes:

K¢, = oM, (6)
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where M and K denote the mass and stiffness matrices of the structure, respectively; o,
and ¢, represent the kth circular frequency and its corresponding mode shape vector,
respectively.

3.2. The MCS-DFNN procedure

To estimate the statistical measures of uncertain structural responses, MCS employs
repeated random sampling based on prescribed probability distributions. In this approach,
each uncertain variable is modeled by a probability distribution, and the simulation
recalculates the output repeatedly, using a new set of random samples each time. Three key
steps define the MCS workflow:

e Identify the predictive model by specifying independent variables (random inputs)
and the dependent variable (response of interest).

o Assign probability distributions to the independent variables, drawing on historical
data or expert judgment, then generate random samples accordingly.

e Run simulations for a predefined number of samples—solving, for example, a
deterministic eigenvalue problem for each realization—until the desired accuracy of
response statistics (e.g., mean, standard deviation) is achieved.

Although MCS is straightforward and robust for stochastic structural mechanics, its
accuracy hinges on the number of samples: the standard deviation error decreases with the
square root of the sample size. Consequently, large-scale systems with many random
parameters incur high computational costs due to the sheer volume of deterministic solves. To
alleviate this burden, we replace the direct eigenvalue analyses with a DFNN surrogate,
yielding an MCS-DFNN framework. The procedure unfolds as follows:

o Construct a dataset of observations pairing input random variables (features) with
their resulting natural frequencies (targets). Each training sample represents one set
of random structural parameters and the corresponding frequency.

e Train a DFNN regression model on this dataset to learn the mapping from input
parameters to natural frequencies.

e Perform MCS without invoking structural eigenvalue solvers in each iteration.
Instead, feed each random sample into the trained DFNN to predict natural
frequencies, dramatically reducing per-sample computational cost.

This MCS-DFNN approach maintains the statistical rigor of conventional MCS while
achieving substantial speed-ups for stochastic eigenvalue analysis of the dome structures.
4. ILLUSTRATIVE EXAMPLES
Two truss-dome examples are analyzed to demonstrate the accuracy and efficiency of the

proposed MCS-DFNN method for computing natural frequencies of lower vibration modes.
For each example, results from the direct MCS and the proposed MCS-DFNN approach are
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compared in terms of solution accuracy and computational cost. In the MCS approach, an
eigenvalue analysis is performed for every sample, whereas the MCS-DFNN replaces the per-
sample eigenvalue computation with predictions from a DFNN. The MCS is carried out using
a total of 20,000 samples. For DFNN training, the dataset of size N is randomly partitioned
into training (70%), validation (15%), and testing (15%) subsets; data points are generated by
eigenvalue analyses of the structure under different realizations of the random variables. The
LHS was utilized to create efficiently distributed data points.

Hyperparameter tuning is performed for each example using Bayesian optimization over
60 objective-function evaluations to optimize the number of hidden layers, number of neurons
per hidden layer, initial learning rate, decay rate for first-moment (mean) of gradients, decay
rate for second-moment (squared gradients), and L2 regularization coefficient (weight decay).
The search ranges for these variables are reported in Table 1. The fixed training
hyperparameters are set as maximum number of epochs = 80, minimum batch size = 64,
learning-rate drop factor = 0.1, and learning-rate drop period = 20. The model is trained using
the Adam optimizer. All computations are carried out on a laptop with an Intel Core 17-
7700HQ CPU at 2.80 GHz and 16 GB of RAM.

Table 1: Range of hyperparameter values used for tuning the deep feedforward neural network.

Variable Type Range
Number of hidden layers Integer [1, 5]
Number of neurons per hidden layer Integer [8, 64]
Initial learning rate Real [104,1077]
Gradient decay factor Real [0.8,0.95]
Squared gradient decay factor Real  [0.98, 0.999]
L2 regularization coefficient Real [107, 107]

4.1. A 600-bar dome

A single-layer truss dome from Refs. [32, 43] is shown in Figure 2. The dome has a span
of 28 m and a height of 7.5 m. It comprises 216 nodes and 600 members formed by cyclic
replication of a 9-node, 25-member substructure; the angular increment between consecutive
substructures is 15°, producing 24 identical sectors. The mean cross-sectional area, Young’s
modulus, and material density for all members are 2x107 m? 2x10° MPa, and 7850 kg/m’,
respectively. All ground-level nodes are simply supported. Cross-sectional area, Young’s
modulus, and mass density are modeled as identically distributed normal random variables
across members with coefficients of variation 0.16, 0.1, and 0.1, respectively

Six natural frequencies are required. Thus, a dataset of size 1000 is generated using
eigenvalue analyses corresponding to 1000 samples of the dome structure; each sample
includes three input features (cross-sectional area, Young’s modulus, and mass density) and
six outputs. Using Bayesian optimization, a DFNN is trained 60 times with varying
hyperparameters to find the best set from the list of optimization variables given in Table 1.
The optimized parameters are provided in Table 2, and the convergence curves are shown in
Figure 3. One curve plots the observed values, i.e., the best objective value actually obtained
by evaluating the true objective to date (the incumbent minimum from real function
evaluations). The other curve plots the estimated values, i.e., the optimizer’s current belief
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about the minimum based on the Gaussian process surrogate (the surrogate’s predicted best
objective derived from the Gaussian process posterior and the acquisition strategy).

True (observed) and predicted values for the first six natural frequencies are plotted in
Figure 4, demonstrating that these values closely match and that the trained DFNN performs
well. The R*> and RMSE values are also shown in Figure 4 to indicate the solution accuracy.
Furthermore, Table 3 lists the means, standard deviations, and computational times for the
MCS and MCS-DFNN approaches. The MCS-DFNN method is substantially faster than direct
MCS, while producing mean and standard-deviation estimates that closely match the MCS
results. Table 3 also confirms that errors increase for higher modes, as expected when
comparing the frequency accuracy across modes resulting from a trained network.
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Figure 2: A 600-bar truss dome.
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Figure 3: Convergence curves for Bayesian optimization applied to hyperparameter tuning of the
deep feedforward neural network for the 600-bar truss dome.
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Figure 4: The observed and predicted natural frequencies of the 600-bar truss dome.

Table 2: Optimized hyperparameters of the deep feedforward neural network used to predict the
natural frequencies of the 600-bar truss dome.

Variable Value
Number of hidden layers 4
Number of neurons per hidden layer 62
Initial learning rate 0.0078
Gradient decay factor 0.9449
Squared gradient decay factor 0.9825
L2 regularization coefficient 1.4739x10*

Table 3: Mean and standard deviation of the natural frequencies for the 600-bar truss dome
obtained with MCS and MCS-DFNN.

MCS MCS-DFNN
Natural frequency
Standard Standard
(Hz) Mean . Mean .

deviation deviation
f 12.5542 0.8957 12.5575 0.8887
1 12.5542 0.8957 12.5548 0.8829
f3 13.5409 0.9661 13.5394 0.9494
fa 13.5409 0.9661 13.5453 0.9578
fs 16.1057 1.1491 16.1090 1.1413
fs 16.1057 1.1491 16.1105 1.1428

Elapsed time (s) 1.3962x103 4.4012

4.2. A 1180-bar dome

A truss dome with 400 nodes and 1180 members is considered in this example, as shown
in Figure 5. The dome is generated by cyclically replicating a substructure of 20 nodes and 59
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members, with an 18° angle between consecutive substructures. Each free node has a
nonstructural mass of 100 kg. This is a benchmark example in structural optimization [44-46],
but here we use it to obtain the first three natural frequencies, treating the 59 members’ cross-
sectional areas of the substructure as uniformly distributed random variables in the range
[0.001, 0.005] m?. Young’s modulus and mass density are deterministic, taken as 2x10°> MPa
and 7850 kg/m?, respectively. Geometry details and member grouping of the structure can be
found in Ref. [46].

A dataset of 6000 samples is generated, each sample containing the 59 cross-sectional area
values as inputs and three natural frequencies as targets. Using Bayesian optimization, a
DFNN is trained 60 times over the hyperparameter sets listed in Table 1 to identify the best
set. The optimized parameters appear in Table 4, and the convergence curves are presented in
Figure 6. Figure 7 compares true (observed) and predicted values of the natural frequencies,
showing close agreement and desirable DFNN performance. Table 5 reports the means,
standard deviations, and computational times for the MCS and MCS-DFNN approaches. The
MCS-DFNN approach is substantially faster than direct MCS and yields mean and standard-
deviation estimates that largely match the MCS results; however, agreement is less exact than
in the previous example because this problem has many more input variables (see also the R?
and RMSE values in Figure 7).

Figure 5: A 1180-bar truss dome.

Table 4: Optimized hyperparameters of the deep feedforward neural network used to predict the
natural frequencies of the 1180-bar truss dome.

Variable Value
Number of hidden layers 5
Number of neurons per hidden layer 64
Initial learning rate 0.0096
Gradient decay factor 0.9239
Squared gradient decay factor 0.9869

L2 regularization coefficient 9.8338x10*
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Figure 6: Convergence curves for Bayesian optimization applied to hyperparameter tuning of the
deep feedforward neural network for the 1180-bar truss dome.
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Figure 7: The observed and predicted natural frequencies of the 1180-bar truss dome.
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Table 5: Mean and standard deviation of the natural frequencies for the 1180-bar truss dome
obtained with MCS and MCS-DFNN,

Natural fr . MCS MCS-DFNN
4 equency Standard Standard
(Hz) Mean .. Mean ..
deviation deviation
h 5.7493 0.3152 5.7513 0.3056
1 5.7493 0.3152 5.7513 0.3058
f 9.6177 0.6126 9.6220 0.5893
Elapsed time (s) 3.9284x10° 48.1163

5. CONCLUDING REMARKS

In this paper, Monte Carlo simulation (MCS) combined with a deep feedforward neural
network (DFNN) is used to predict the natural frequencies of truss structures with uncertain
parameters. The uncertain parameters—Young’s modulus, mass density, and cross-sectional
area—are modeled as random variables with uniform or normal distributions. The stochastic
eigenvalue problem arising from these random parameters is sampled with MCS to obtain
realizations of the natural frequencies. To reduce the high computational cost of repeatedly
solving eigenvalue problems within the MCS, a DFNN surrogate predicts the eigenvalues for
each sample, replacing the full eigenvalue analysis. The DFNN is trained using far fewer full-
order simulations than the total number of Monte Carlo samples, enabling efficient prediction
of natural frequencies. Bayesian optimization is used to tune the DFNN hyperparameters and
improve its performance. The examples of truss domes, featuring different randomized
parameters, demonstrate the accuracy and speed of the proposed MCS-DFNN approach
compared with direct MCS. Results show that MCS-DFNN achieves comparable solution
accuracy while substantially reducing computational time, with the cost savings becoming
especially pronounced for large-scale structures. The MCS-DFNN framework is general and
can be extended to stochastic eigenvalue analyses of other structural systems.
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