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ABSTRACT  
 

In the present study, the computational performance of the particle swarm optimization 
(PSO) harmony search (HS) and firefly algorithm (FA), as popular metaheuristics, is 
investigated for size and shape optimization of truss structures. The PSO was inspired by the 
social behavior of organisms such as bird flocking. The HS imitates the musical 
performance process which takes place when a musician searches for a better state of 
harmony, while the FA was based on the idealized behavior of the flashing characteristics of 
natural fireflies. These algorithms were inspired from different natural sources and their 
convergence behavior is focused in this paper. Several benchmark size and shape 
optimization problems of truss structures are solved using PSO, HS and FA and the results 
are compared. The numerical results demonstrate the superiority of FA to HS and PSO. 
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1. INTRODUCTION 
 

As the material cost is one of the major factors in the construction of a structure, it is 
preferable to reduce it by minimizing the weight of the structural system. All of the methods 
used for minimizing the weight intend to achieve an optimum design having a set of design 
variables under certain design criteria. Optimum design of structures is usually achieved by 
selecting the design variables such that an objective function is minimized while all of the 
design constraints are satisfied [1]. Since truss structures are widely used for structural 
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applications, optimum design of this type of structures has a great importance. Generally, in 
design optimization of truss structures, the objective is to find the best feasible structure with 
a minimum weight [2]. The great development of structural optimization took place in the 
early 1960s and from then on, various general approaches have been developed and adopted 
to structural optimization. 

The main idea behind designing the metaheuristic algorithms is to tackle complex 
optimization problems where other optimization methods have failed to be effective. These 
methods are now recognized as one of the most practical approaches for solving many real-
world problems. The practical advantage of metaheuristics lies in both their effectiveness 
and general applicability. In fact, metaheuristics are the most general kinds of stochastic 
optimization algorithms, and are applied to a very wide range of problems. In recent years, 
metaheuristic algorithms are emerged as the global search approaches which are responsible 
to tackle the complex optimization problems. By taking a glance at literature it can be 
observed that the most popular metaheuristics are genetic algorithm (GA) [3], ant colony 
optimization (ACO) [4], particle swarm optimization (PSO) [5], harmony search (HS) [6] 
and firefly algorithm (FA) [7]. Lamberti and Pappalettere [8] achieved a comprehensive 
review of the metaheuristics and their applications in the field of structural optimization.  

The FA is an optimization technique, developed recently by Yang [7] at Cambridge 
University. It is inspired by social behavior of fireflies and the phenomenon of 
bioluminescent communication. The superiority of FA to PSO and GA was demonstrated 
using various test functions [7, 9]. Gandomi et al. [10] utilized the FA to solve benchmark 
mixed-variable and non-convex optimization problems. In [2] FA was employed to achieve 
shape optimization of structures. In the present study, PSO, HS and FA algorithms are 
employed to achieve size and shape optimization of truss structures and the results are 
compared.   

 
 

2. PROBLEM FORMULATION  
 
In structural optimization problems the aim is usually to minimize an objective function, under 
some behavioural constraints. This problem may be expressed as follows: 
 

 

 

Minimize    f(X)  
Subject to   gi(X) ≤ 0  ,   i = 1, . . . , m

u
jj

l
j XXX    ,   j = 1, . . . , n 

 (1) 

 
where, X is the vector of design variables; f(X) is the objective function to be minimized; 
gi(X) is the ith behavioral constraints; u

j
l
j XX  and are the lower and the upper bounds on a 

typical design variable 
jX .  

In this study, to transform the constrained structural optimization problem into an 
unconstrained one the exterior penalty function method (EPFM) is employed. The above 
mentioned constrained optimization problem can be converted into an unconstrained 
problem by constructing a function of the following form: 
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where, Φ and rp are the pseudo objective function, and positive penalty parameter, 
respectively. 

 
 

3. METAHEURISTICS 
 
Stochastic optimization is the general class of techniques which employ some degree of 
randomness to find optimal solutions to hard problems. In order to comprehensively explore 
a larger fraction of the design space, stochastic search techniques reveal their promising 
abilities in comparison with gradient-based optimization methods. Metaheuristics are the 
most general of these kinds of algorithms, and are applied to a very wide range of problems. 
Metaheuristics solve instances of problems that are believed to be hard in general, by 
exploring the usually large solution search space of these instances. These algorithms 
achieve this by reducing the effective size of the space and by exploring that space 
efficiently. Metaheuristics serve three main purposes: solving problems faster, solving large 
problems, and obtaining robust algorithms. Moreover, they are simple to design and 
implement, and are very flexible. The past 20 years have witnessed the development of 
numerous metaheuristics in various communities that sit at the intersection of several fields, 
including artificial intelligence, computational intelligence and soft computing. Most of the 
metaheuristics mimic natural metaphors to solve complex optimization problems such as 
evolution of species, annealing process, ant colony, particle swarm, immune system, bee 
colony, and wasp swarm. Metaheuristics are more and more popular in different research 
areas. In the present paper, PSO, HS and FA metaheuristic algorithms are considered and 
their essential concepts are briefly described below. 
 
3.1. Particle swarm optimization 

The PSO is based on the social behaviour of animals such as fish schooling, insect swarming 
and bird flocking. The PSO has been proposed to simulate the graceful motion of bird 
swarms as a part of a socio-cognitive study. 

The PSO involves a number of particles, which are randomly initialized in the search 
space. These particles are referred to as swarm. Each particle of the swarm represents a 
potential solution of the optimization problem. The particles fly through the search space 
and their positions are updated based on the best positions of individual particles and the 
best of the swarm in each iteration. The objective function is evaluated for each particle at 
each grid point and the fitness values of particles are obtained to determine the best position 
in the search space [11]. In iteration t, the swarm is updated using the following equations: 
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where iX and iV represent the current position and the velocity of the ith particle, 

respectively; iP is the best previous position of the ith particle (pbest) and gP is the best 

global position among all the particles in the swarm (gbest); 
1r  and 

2r  are two uniform 

random sequences generated from interval [0, 1]; c1 and c2 are the cognitive and social 
scaling parameters, respectively. The inertia weight used to discount the previous velocity of 
particle preserved is expressed byω .  

Due to the importance of ω  in achieving efficient search behavior the updating criterion 
can be taken as follows: 

 t.
t

ωω
ωω

max

minmax
max


  (5) 

 
where 

maxω and 
inmω are the maximum and minimum values of ω , respectively. Also, 

maxt , 

and t are the numbers of maximum iterations and present iteration, respectively. 
The main steps in the standard PSO may be stated as follows:  
 
(a) Initialize a swarm of particles by randomly selecting particles from design space.  
(b) Update particles’ velocity. 
(c) Update particles’ position. 
(d) Analyze the swarm to evaluate the fitness value of each particle. 
(e) Update the pbest and the gbest. 
(f) Repeat (b) to (f) until a termination condition is satisfied. 

 
In the field of structural engineering many successful application of PSO have been reported 
in literature. A number of such applications can be found in [12-14].             

 
3.2. Harmony search 

The HS is based on the musical performance process that achieves when a musician 
searches for a better state of harmony. Jazz improvisation seeks musically pleasing harmony 
similar to the optimum design process which seeks optimum solutions. The pitch of each 
musical instrument determines the aesthetic quality, just as the objective function value is 
determined by the set of values assigned to each design variable. In the process of musical 
production a musician selects and brings together number of different notes from the whole 
notes and then plays these with a musical instrument to find out whether it gives a pleasing 
harmony. The musician then tunes some of these notes to achieve a better harmony. 
Similarly it is then checked whether this candidate solution improves the objective function 
or not. This candidate solution is then checked to find out whether it satisfies the objective 
function or not, similar to the process of finding out whether euphonic music is obtained or 
not. The HS consists of five basic steps which can be summarized as follows: 

A possible range for each design variable is specified. The number of solution vectors in 
harmony memory (HM) or size of HM (HMS), the harmony considering rate (HMCR), the 
pitch adjusting rate (PAR) and the maximum number of searches are also specified. 

An initial harmony memory matrix (HM) is produce. The HM is a matrix in which each 
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row contains the values of design variables which are randomly selected from the design 
space. If the optimization problem includes n design variables the HM has the following 
form:  
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where j

ix  is the value of the ith design variable in the jth solution vector.  

To improvise new HM, a new harmony vector is generated. Thus the new value of the ith 
design variable can be chosen from the possible range of ith column of the HM with the 
probability of HMCR or from the entire possible range of values with the probability of 1-
HMCR as follows: 
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where iΔ is the set of the potential range of values for ith design variable. The HMCR is the 

probability of choosing one value from the significant values stored in the HM, and (1-
HMCR) is the probability of randomly choosing one practical value not limited to those 
stored in the HM. 

As the third operation components of the new harmony vector, is examined to determine 
whether it should be pitch-adjusted. Pitch adjusting is performed only after a value has been 
chosen from the HM as follows: 

 

 ? ofadjusment pitch new
ix




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RAP of yprobabilit  thewith


 (8) 

 
If the pitch-adjustment decision for new

ix  is "Yes", then a neighboring value with the 

probability of PAR%×HMCR is taken for it as follows: 
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where u(-1,+1) is a uniform distribution between -1 and +1; also bw is an arbitrary distance 
bandwidth for the continuous design variables. 

This operation increases the chance of reaching the global optimum.  
After selecting the new values for each design variables the objective function value is 
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calculated for the new harmony vector. In this case new
ix is analyzed using FEM and its 

objective function value is determined. If new
ix is better than the worst vector in the HM, the 

new harmony is substituted by the existing worst harmony. The HM is then sorted in 
descending order by the objective function value. 

The optimization process of HS is repeated by continuing improvising new harmonies 
until a termination criterion is satisfied. 

However HS is a relatively new metaheuristic algorithm, its efficiency for solving 
complex structural optimization problems has been demonstrated in many researches. For 
example, one can see [15-17].  

 
3.3. Firefly algorithm 

The FA is a new metaheuristic optimization algorithm inspired by the flashing behavior of 
fireflies. FA is a population-based algorithm, which may share many similarities with PSO. 
Fireflies communicate, search for pray and find mates using bioluminescence with varied 
flashing patterns [10]. In order to develop the firefly algorithm, natural flashing 
characteristics of fireflies have been idealized using the following three rules [7]: 

a. All of the fireflies are unisex; therefore, one firefly will be attracted to other fireflies 
regardless of their sex. 

b. Attractiveness of each firefly is proportional to its brightness, thus for any two 
flashing fireflies, the less bright firefly will move towards the brighter one. The 
attractiveness is proportional to the brightness and they both decrease as their 
distance increases. If there is no brighter one than a particular firefly, it will move 
randomly. 

c. The brightness of a firefly is determined according to the nature of the objective 
function. 

The attractiveness of a firefly is determined by its brightness or light intensity which is 
obtained from the objective function of the optimization problem. However, the 
attractiveness β, which is related to the judgment of the beholder, varies with the distance 
between two fireflies. The attractiveness β can be defined by [18]: 
 

 
2r-

0e
.   (10) 

 
where r is the distance of two fireflies, 0 is the attractiveness at r = 0, and is the light 
absorption coefficient.  

The distance between two fireflies i and j at Xi and Xj respectively, is determined using 
the following equation: 
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where xi,k is the k-th parameter of the spatial coordinate xi of the i-th firefly.  

In the firefly algorithm, the movement of a firefly i towards a more attractive (brighter) 
firefly j is determined by the following equation [18]: 
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where the second term is related to the attraction, while the third term is randomization with 
α being the randomization parameter. Also rand is a random number generator uniformly 
distributed in [0, 1]. 

In this paper, a slight modification is accomplished on the third term of Eq. (12). In this 
case, α is changed dynamically according to the following equation: 
 

 t.
tmax

minmax
max

 
  (13) 

  
where αmax=1 and αmin=0.2. Also, tmax and t are the numbers of maximum iterations and 
present iteration, respectively. It should be noted that, various values are examined for αmax 
and αmin and the best results are obtained in the case of reported values.  

We observed that by using Eq. (13) the convergence behavior of FA was improved. 
Therefore, in this paper the following updating equation is used: 
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As FA is a very new metaheuristic algorithm, there are a few papers on application of FA 

to structural optimization [2, 10, 19]. 
 
 

4. NUMERICAL RESULTS 
 

In the present paper, two size optimization examples, including a 10-bar planar truss and a 
72-bar space truss, and two shape optimization examples including a 15-bar planar truss and 
a 25-bar space truss structures are optimized by PSO, HS and FA to investigate the 
computational performance of the algorithms. The selected test examples have been 
optimized by other researchers and the results obtained in this paper are compared with their 
results. For all examples, the size of population is considered to be 20 and the maximum 
number of iterations is 500. All of the required computer programs are coded in MATLAB 
platform. Also, to achieve optimization processes a personal Pentium IV 3000MHz is 
employed.   

 
4.1. Example 1: size optimization of 10-bar planar truss 

The 10-bar truss structure is shown in Figure 1. The loads applied to the truss are P1 = 105 
lbs, P2 = 0. The material density is 0.1 lb/in3 and the modulus of elasticity is 10,000 ksi. The 
members are subjected to stress limitations of ±25 ksi. All nodes in both directions are 
subjected to displacement limitations of ±2.0. 
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Figure 1. 10-bar truss structure 
 
There are 10 design variables and two design cases in this example are considered. In 

case 1: the discrete variables are selected from the set D = {1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 
2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 
4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 
19.90, 22.00, 22.90, 26.50, 30.00, 33.50} (in2);  

In case 2: the discrete variables are selected from the set D = {0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 
3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 
12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20.0, 
20.5, 21.0, 21.5, 22.0, 22.5, 23.0, 23.5, 24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 27.0, 27.5, 28.0, 
28.5, 29.0, 29.5, 30.0, 30.5, 31.0, 31.5} (in2). 

The comparison of optimal designs for the 10-bar planar truss structure under two load cases 
are given in Tables 1 and 2, respectively. In these tables the maximum nodal deflection and 
element stress are expressed by |dmax| and |σmax|, respectively. To investigate the computational 
performance of the PSO, HS and FA metaheuristics in this example, 20 independent runs are 
implemented and statistical results of these runs for both cases are given in Table 3. 

 
Table 1. Comparison of optimal designs for the 10-bar truss structure (Case 1) 

Li et al. [20] Gholizadeh [1] Present study 
Design variables No. 

PSOPC HPSO IPSO PSO HS FA 
1 30.00 30.00 33.50 33.50 30.00 33.50 
2 1.80 1.62 1.62 1.62 1.8 1.62 
3 26.50 22.90 22.90 22.90 22.90 22.90 
4 15.50 13.50 14.20 14.20 13.50 14.20 
5 1.62 1.62 1.62 1.62 1.62 1.62 
6 1.62 1.62 1.62 1.62 1.62 1.62 
7 11.50 7.97 7.97 7.97 11.50 7.97 
8 18.80 26.50 22.90 22.90 22.00 22.90 
9 22.00 22.00 22.00 22.00 22.90 22.00 

10 3.09 1.80 1.62 1.62 1.99 1.62 

Weight (lb) 5593.44 5531.98 5490.74 5490.74 5544.6 5490.74 
Number of analyses 50000 50000 4512 10000 10000 10000 

|dmax| 1.995 1.999 1.999 1.999 1.999 1.999 
|σmax| 11.482 14871 14197 14.197 10.9833 14.197 
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Table 2. Comparison of optimal designs for the 10-bar truss structure (Case 2) 

Li et al. [20] Gholizadeh [1] Present study Design variables 
No. PSOPC HPSO IPSO PSO HS FA 

1 25.5 31.5 29.5 29.5 28.5 31.0 
2 0.1 0.1 0.1 0.1 0.1 0.1 
3 23.5 24.5 24.0 24.0 21.5 23.0 
4 18.5 15.5 15.0 15.0 14.0 15.0 
5 0.1 0.1 0.1 0.1 0.1 0.1 
6 0.5 0.5 0.5 0.5 0.5 0.5 
7 7.5 7.5 7.5 7.5 8.0 7.5 
8 21.5 20.5 21.5 21.5 23.0 21.0 
9 23.5 20.5 21.5 21.5 23.5 21.5 

10 0.1 0.1 0.1 0.1 0.1 0.1 

Weight (lb) 5133.16 5073.51 5067.33 5067.33 5104.9 5060.6 
Number of analyses 50000 50000 5600 10000 10000 10000 

|dmax| 2.000 1.999 1.999 1.999 1.996 2.000 

|σmax| 24.714 24.394 24.604 24.604 23.941 24.947 

 
Table 3. Results of 20 runs of PSO, HS and FA for the 10-bar truss 

Case 1 Case 2 
Evaluation metrics 

PSO HS FA PSO HS FA 

Best weight 5490.73 5544.60 5490.73 5067.33 5104.90 5060.60 

Worst weight 5676.81 5898.71 5597.73 5170.20 5471.60 5084.10 

Average weight 5591.71 5778.72 5531.30 5107.40 5283.20 5064.90 

Standard deviation 72.20 90.91 37.49 40.41 98.10 5.40 

 
It can be observed from the tables that the computational performance of FA is better 

than that of the PSO and HS. Also the results demonstrate the superiority of PSO to HS. The 
results also reveal that, the IPSO algorithm proposed by Gholizadeh [1] is better than the 
slightly modified FA in terms of required structural analyses. This implies that the 
computational performance of FA may be modified by hybridizing it with other 
metaheuristics. 

 
4.2. Example 2: size optimization of 72-bar space truss 

The 72-bar spatial truss structure is shown in Figure 2. The material density is 0.1 lb/in3 
and the modulus of elasticity is 10,000 ksi. The members are subjected to stress 
limitations of ±25 ksi. The uppermost nodes are subjected to displacement limitations of 
±0.25 in both the x and y directions. Two load cases are listed in Table 4. There are 72 
members, which are divided into 16 groups, as follows:  
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Figure 2. 72-bar space truss structure 
 

(1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30 (7) 
A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–A54, 
(13) A55–A58, (14) A59–A66 (15) A67–A70, (16) A71–A72.  
 

Two optimization cases are considered as follows: 
 
Case 1: The discrete variables are selected from the set D = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
0.8,0.9,1.0, 1.1,1.2, 1.3,1.4, 1.5,1.6, 1.7, 1.8, 1.9, 2.0, 2.1,2.2, 2.3,2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 
3.0, 3.1,3.2} (in2).  
Case 2: The discrete variables are selected from Table 5.  

 
Optimal design results for the 72-bar space truss structure, for two mentioned cases, 

are compared in Tables 6 and 7, respectively. In these tables the maximum nodal 
deflection and element stress are presented by |dmax| and |σmax|, respectively. 
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Table 4. The load cases for the 72-bar space truss structure 

Load Case 1 Load Case 2 
Nodes 

Px (kips) Py (kips) Pz (kips) Px (kips) Py (kips) Pz (kips) 

17 5.0 5.0 –5.0 0.0 0.0 –5.0 

18 0.0 0.0 0.0 0.0 0.0 –5.0 

19 0.0 0.0 0.0 0.0 0.0 –5.0 

20 0.0 0.0 0.0 0.0 0.0 –5.0 

 
Table 5. The available cross-sectional areas for second example 

No. Cross-sectional area (in2) No. Cross-sectional area (in2) 
1 0.111 33 3.840 
2 0.141 34 3.870 
3 0.196 35 3.880 
4 0.250 36 4.180 
5 0.307 37 4.220 
6 0.391 38 4.490 
7 0.442 39 4.590 
8 0.563 40 4.800 
9 0.602 41 4.970 

10 0.766 42 5.120 
11 0.785 43 5.740 
12 0.994 44 7.220 
13 1.000 45 7.970 
14 1.228 46 8.530 
15 1.266 47 9.300 
16 1.457 48 10.850 
17 1.563 49 11.500 
18 1.620 50 13.500 
19 1.800 51 13.900 
20 1.990 52 14.200 
21 2.130 53 15.500 
22 2.380 54 16.000 
23 2.620 55 16.900 
24 2.630 56 18.800 
25 2.880 57 19.900 
26 2.930 58 22.000 
27 3.090 59 22.900 
28 1.130 60 24.500 
29 3.380 61 26.500 
30 3.470 62 28.000 
31 3.550 63 30.000 
32 3.630 64 33.500 
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Table 6. Comparison of optimal designs for the 72-bar truss structure (case 1) 

Li et al. [7] Gholizadeh [1] Present study Design variables 
No. PSOPC HPSO IPSO PSO HS FA 

1 3.0 2.1 2.0 2.0 3.2 1.9 

2 1.4 0.6 0.5 0.5 0.5 0.5 

3 0.2 0.1 0.1 0.1 0.1 0.1 

4 0.1 0.1 0.1 0.1 0.1 0.1 

5 2.7 1.4 1.2 1.2 1.4 1.3 

6 1.9 0.5 0.5 0.5 0.4 0.5 

7 0.7 0.1 0.1 0.1 0.1 0.1 

8 0.8 0.1 0.1 0.1 0.1 0.1 

9 1.4 0.5 0.6 0.6 0.7 0.6 

10 1.2 0.5 0.5 0.5 0.5 0.5 

11 0.8 0.1 0.1 0.1 0.1 0.1 

12 0.1 0.1 0.1 0.1 0.1 0.1 

13 0.4 0.2 0.2 0.2 0.2 0.2 

14 1.9 0.5 0.6 0.6 0.5 0.6 

15 0.9 0.3 0.4 0.4 0.4 0.4 

16 1.3 0.7 0.6 0.6 0.7 0.6 

Weight (lb) 1069.79 388.94 385.54 385.54 403.46 385.54 

Number of analyses 50000 50000 4176 10000 10000 10000 

|dmax| 0.1 0.25 0.2502 0.2502 0.2496 0.2500 

|σmax| 5.726 3.293 20.368 20.368 20.595 20.380 

 
In this example, the computational performance of the PSO, HS and FA metaheuristics 

are investigated through 20 independent runs and the results of cases 1 and 2 are given in 
Tables 8. 

The numerical results demonstrate the superiority of FA to both PSO and HS. Also it is 
observed that PSO is better than the HS. As well as the first example, it is also reveal that 
the IPSO algorithm [1] is better than the FA in terms of required structural analyses. This 
implies that, some computational strategies can be adopted to improve the computational 
performance of FA. 
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Table 7. Comparison of optimal designs for the 72-bar truss structure (case 2) 

Li et al. [7] Gholizadeh [1] Present study 
Design variables No. 

PSOPC HPSO IPSO PSO HS FA 

1 4.490 4.970 1.800 1.800 1.228 1.800 

2 1.457 1.228 0.563 0.563 0.994 0.563 

3 0.111 0.111 0.111 0.111 0.111 0.111 

4 0.111 0.111 0.111 0.111 0.111 0.111 

5 2.620 2.880 1.228 1.266 1.228 1.266 

6 1.130 1.457 0.442 0.442 0.563 0.442 

7 0.196 0.141 0.111 0.111 0.111 0.111 

8 0.111 0.111 0.111 0.111 0.111 0.111 

9 1.266 1.563 0.563 0.563 0.563 0.563 

10 1.457 1.228 0.563 0.563 0.563 0.563 

11 0.111 0.111 0.111 0.111 0.111 0.111 

12 0.111 0.196 0.111 0.111 0.111 0.111 

13 0.442 0.391 0.196 0.196 0.196 0.196 

14 1.457 1.457 0.563 0.563 0.442 0.563 

15 1.228 0.766 0.442 0.442 0.563 0.442 

16 1.457 1.563 0.602 0.602 0.543 0.602 

Weight (lb) 941.82 933.09 388.56 389.45 424.88 389.45 

Number of analyses 50000 50000 5968 10000 10000 10000 

|dmax| 0.1 0.1 0.2503 0.2496 0.2497 0.2496 

|σmax| 9.491 10.272 20.709 20.713 21.187 20.713 

 
Table 8. Results of 20 runs of PSO, HS and FA for the 72-bar truss 

Case 1 Case 2 
Evaluation metrics 

PSO HS FA PSO HS FA 

Best weight 385.54 403.46 385.54 388.56 424.88 388.56 

Worst weight 411.90 438.94 389.35 411.85 446.47 402.84 

Average weight 391.31 417.22 387.20 395.06 427.62 391.12 

Standard deviation 8.92 14.13 1.00 8.36 8.90 4.11 



S. Gholizadeh and H. Barati 

 

436 

4.3. Example 3: shape optimization of 15-bar planar truss 

A fifteen-bar truss is shown in Figure 3. The material density is 0.1 lb/in3 and the modulus 
of elasticity is 104 ksi. In this example there are 23 design variables including two 
categories:  
Sizing variables: Ai , i=1,2,…,15  
Geometry variables: x2 = x6; x3 = x7; y2; y3; y4; y6; y7; y8.  
The size variables are selected from the following set: 
 
D = { 0.111, 0.141, 0.174, 0.220, 0.270, 0.287, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 
1.333, 1.488, 1.764, 2.142, 2.697, 2.800, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 
8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 19.180} (in.2). 
 
Also side constraints for geometry variables are as follows:  
100 in. ≤ x2 ≤ 140 in.; 220 in. ≤ x3 ≤ 260 in.; 100 in. ≤ y2 ≤ 140 in.; 100 in. ≤ y3 ≤ 140 in.;  
50 in. ≤ y4 ≤ 90 in.; −20 in. ≤ y6 ≤ 20 in.; −20 in. ≤ y7 ≤ 20 in.; 20 in. ≤ y8 ≤ 60 in.; 

  

 

Figure 3. A fifteen-bar truss 
 
Stress limitation for all elements is 25 ksi. In this example, optimal design results 

obtained are compared with those of Tang et al. [21] and Rahami et al. [22] in Table 9. 
The computational performance of the PSO, HS and FA metaheuristics in this example 

are investigated through 20 independent runs and the results are summarized in Table 10. 
The numerical results indicate that the FA converges to a solution which is better than 

that of those reported by the other researchers in [21, 22], however, FA requires more 
computational cost (10000 analyses versus 8000 ones). The results also demonstrate the 
superiority of FA to both PSO and HS metaheuristics. In this example also, PSO is better 
than the HS. 
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Table 9. Comparison of optimal designs for the 15-bar planar truss 

Present study 
Design variables Tang et al. [21] Rahami et al. [22] 

PSO HS FFA 

A1 1.081 1.081 0.954 1.081 0.954 

A2 0.539 0.539 0.539 0.954 0.539 

A3 0.287 0.287 0.111 0.27 0.27 

A4 0.954 0.954 0.954 0.954 1.081 

A5 0.954 0.539 0.539 0.539 0.539 

A6 0.220 0.141 0.270 0.270 0.174 

A7 0.111 0.111 0.111 0.111 0.111 

A8 0.111 0.111 0.111 0.141 0.111 

A9 0.287 0.539 0.111 0.220 0.440 

A10 0.220 0.440 0.440 0.220 0.440 

A11 0.440 0.539 0.539 0.440 0.347 

A12 0.440 0.270 0.220 0.111 0.220 

A13 0.111 0.220 0.287 0.440 0.220 

A14 0.220 0.141 0.347 0.287 0.174 

A15 0.347 0.287 0.111 0.220 0.270 

x2 133.612 101.577 106.290 137.260 113.65 

x3 234.752 227.910 248.980 220.000 254.47 

y2 100.449 134.790 140.000 138.520 128.97 

y3 104.738 128.220 140.000 127.410 115.73 

y4 73.762 54.860 50.000 50.000 59.364 

y6 -10.067 -16.440 -7.8109 19.180 -12.733 

y7 -1.339 -13.300 8.1291 2.800 3.5467 

y8 50.402 54.850 52.701 38.330 59.290 

Weight (lb) 79.82 76.68 77.04 80.36 73.93 

Number of analyses 8000 8000 10000 10000 10000 

|σmax| 23.876 24.9992 24.998 24.994 24.998 
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Table 10. Results of 20 runs of PSO, HS and FA for the 15-bar truss 

Evaluation metrics PSO HS FA 

Best weight 77.04 80.36 73.93 

Worst weight 90.38 92.90 82.48 

Average weight 84.60 85.24 79.85 

Standard deviation 3.82 4.45 2.29 

 
4.4. Example 4: SHAPE optimization of 25-bar space truss 

A 25-bar truss is considered as shown in Figure 4. Loading data is provided in Table 11.  
 

 

Figure 4. 25-bar space truss 
 

Table 11. Loading data for the 25-bar truss 

Node Fx (kips) Fy (kips) Fz (kips) 

1 1.0 -10.0 -10.0 

2 0.0 -10.0 -10.0 

3 0.5 0.0 0.0 

6 0.6 0.0 0.0 
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The material density is 0.1 lb/in3 and the modulus of elasticity is 104 ksi. Stress limitation 
fro all elements is ksi 40  also displacement constraint in all directions is 0.35 in. There are 
13 design variables including two categories:  
Size variables: A1; A2 = A3 = A4 = A5; A6 = A7 = A8 = A9; A10 = A11; A12 = A13; A14 = A15 = A16 
= A17; A18 = A19 = A20 = A21; A22 = A23 = A24 = A25 
Geometry variables: x4 = x5 = -x3 = -x6; x8 = x9 = -x7 = -x10; y3 = y4 = -y5 = -y6; y7 = y8 = -y9 = 
-y10; z3 = z4 = z5 = z6 
The size variables are selected from the following set: 
 
D = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 
2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4} (in.2). 
 
Also side constraints for geometry variables are as follows:  
20 ≤ x4 ≤ 60 in.; 40 ≤ x8 ≤ 80 in.; 40 ≤ y4 ≤ 80 in.; 100 ≤ y8 ≤ 140 in.; 90 ≤ z4 ≤ 130 in.; 

In this example, optimal design results are given in Table 12.  
 

Table 12. Comparison of optimal designs for the 25-bar space truss 

Present study 
Design variables Tang et al. [21] Rahami et al. [22]

PSO HS FA 

A1 0.1 0.1 0.1 0.1 0.1 

A2 0.1 0.1 0.1 0.1 0.1 

A3 1.0 1.1 0.9 1.0 1.0 

A4 0.1 0.1 0.1 0.1 0.1 

A5 0.1 0.1 0.1 0.1 0.1 

A6 0.2 0.1 0.1 0.1 0.1 

A7 0.2 0.2 0.1 0.1 0.1 

A8 0.7 0.8 1.0 1.0 0.9 

x4 35.47 33.048 36.749 32.950 37.401 

y4 60.37 53.5667 63.478 68.185 55.379 

z4 129.07 129.90 115.950 107.370 129.290 

x8 45.06 43.782 48.033 47.360 51.807 

y8 137.04 136.83 137.980 136.020 139.560 

Weight (lb) 124.94 120.115 118.93 122.62 117.35 

Number of analyses 6000 10000 10000 10000 10000 

|dmax| 0.350 0.3500 0.3499 0.345 0.3498 

|σmax| 18.350 16.828 17.699 17.757 19.194 
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Similar to the previous examples, in this example the computational performance of the 
PSO, HS and FA metaheuristics are investigated through 20 independent runs and the 
results are summarized in Table 13. 

 
Table 13. Results of 20 runs of PSO, HS and FA for the 25-bar truss 

Evaluation metrics PSO HS FA 

Best weight 118.93 122.62 117.35 

Worst weight 135.04 135.6 134.28 

Average weight 127.53 128.19 125.33 

Standard deviation 5.07 3.95 2.59 

 
Compared to the results reported in [21, 22], the FA converges to a better solution. The 

results also demonstrate the superiority of FA to PSO and HS. It is observed in this example 
that the PSO performs better than the HS. 

 
 

5. CONCLUSIONS 
 

The main contribution of the present study is to investigate computational performance of 
three popular metaheuristics, PSO, HS and FA, for size and shape optimization of planar and 
space truss structures. In order to achieve this purpose, four benchmark size and shape 
optimization problems are tackled using the mentioned metaheuristics and the obtained 
results are compared to those of the other papers. Also in the case of all the examples, the 
results of 20 independent runs of each employed are reported. The numerical results 
demonstrate that the FA converges to a better solution in comparison with the PSO, HS and 
some other algorithms reported in the literature. Finally, it is expected that by hybridizing 
the FA with other metaheuristics, the computational performance of the hybrid algorithm 
will be improved. 
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