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ABSTRACT 
 

Based on introducing two optimization algorithms, group search optimization (GSO) 
algorithm and particle swarm optimization (PSO) algorithm, a new hybrid optimization 
algorithm which named particle swarm-group search optimization (PS-GSO) algorithm is 
presented and its application to optimal structural design is analyzed. The PS-GSO is used to 
investigate the spatial truss structures with discrete variables and is tested by truss 
optimization problems. The optimization results are compared with that of the HPSO and 
GSO algorithm. The results show that the PS-GSO is able to accelerate the convergence rate 
effectively and has the fastest convergence rate among these three algorithms. The research 
shows the proposed PS-GSO algorithm can be effectively applied to optimal design of 
spatial structures with discrete variables.  
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1. INTRODUCTION 
 

Bionic optimization algorithms, notably Evolutionary Algorithms (EAs) had been widely 
used to solve various scientific and engineering problems and have been extensively used in 
structural optimization problems recently. Among them, ant colony optimizer (ACO), 
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particle swarm optimizer and group search optimization inspired by Dorigo [1], Kenndy and 
Eberthart [2], Barnard and He [3, 4] respectively, are three typical representatives. The 
‘individual behavior’ of group is mainly considered by ACO and PSO, in which evolution 
behavior is based on the evolutionary theory. These two algorithms belong to ‘evolutionary 
strategies’ areas in a way. ACO is good at solving discrete variable tasks and combination 
optimization problems but shows a low evolutionary velocity [5]. PSO suits for continuous 
and discrete variables optimization problems but is easy to entrap into local minima [6-9]. 
Also they are time consuming in optimizing complex structures. As we know, 
gregariousness is a common phenomenon in animality, ‘information communication’ and 
‘mutual cooperation’ are two important aspects of group behavior. Group search optimizer 
(GSO) is such an optimization algorithm which is based upon this group specialty and also 
has been successfully used in structural optimal design with continuous variables [10-12]. 
However, as the bars, the areas of cross-sections of practical engineering structures are 
produced according to specifications, structural optimization with discrete variables is of 
value of practical application and shows more obvious significance. 

To improve the efficiency of PSO for structural optimization, a new hybrid optimization 
algorithm named Particle Swarm-Group Search Optimization (PS-GSO) is presented in this 
paper, which is based on the combination of the particle swarm optimizer (PSO) and group 
search optimizer (GSO). Compared with the heuristic particle warm algorithm [7], the basic 
GSO [13] algorithm, the genetic algorithm [14], the hybrid genetic algorithm [15], and the 
harmony search heuristic algorithm [16, 17], this hybrid PS-GSO algorithm has preferable 
convergence rate and accuracy.  

 
 

2. MATHEMATIC MODEL OF OPTIMIZATION DESIGN 
 

The mathematic model of optimization design can be express as follows: 
 
min ( )f X  
subject to ( ) 0ig X ≤ , 1, 2,...,i m=  

 
where ( )f X  is the objective function, and ( )ig X  is the inequality constraints. The 
variables vector X  represents a set of the design variables, and m  is the number of 
constraints. 

 
 

3. GROUP SEARCH OPTIMIZER (GSO) ALGORITHM 
 

GSO [10] is inspired by the food searching behavior and group living theory of social 
animals, such as birds, fish and lions. The foraging strategies of these animals mainly 
include: producing, e.g., searching for food; and joining (scrounging), e.g., joining resources 
uncovered by others. GSO also employs ‘rangers’ which perform random walks to avoid 
entrapment in local minima. Therefore, in GSO, a group consists of three kinds of members: 
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producers, scroungers and rangers. At each iteration, a group member, located in the most 
promising area, conferring the best fitness value, is chosen as the producer. It locates in the 
most promising area and stays still. The other group members are selected as scroungers or 
rangers by random. Then, each scrounger makes a random walk towards the producer, and 
the rangers make a random walk in arbitrary direction. It is also assumed that the producer, 
scroungers and rangers do not differ in their relevant phenotypic characteristics. Therefore, 
they can switch among the three roles. The GSO behaves as follows [18]: 

In an n-dimensional search space, the thi  member at the thk  searching bout (iteration) has 
a current position k n

iX ∈R , a head angle ( ) 1
1 ( 1),...,k k k n

i i i nϕ ϕ ϕ −
−= ∈R   and a head direction 

( ) ( )1,...,k k k k n
i i i inD d dϕ = ∈R  which can be calculated from k

iϕ  via a Polar to Cartesian 
coordinate transformation:  
 
 

 
1

1
1

cos( )
n

k k
i ip

p

d ϕ
−

=

=∏
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1

( 1)sin( ) cos( )
n

k k k
ij i j ip

p i

d ϕ ϕ
−

−
=

= ⋅∏

 

(2) 

 

 ( 1)sin( )k k
in i nd ϕ −=

 

(3) 
 

In the GSO algorithm, the group consists of three individuals: producer, scroungers and 
rangers. At the thk  iteration the producer pX  behaves as follows: 

(1) The producer will scan at zero degree and then scan laterally by randomly sampling 
three points in the scanning field: one point at zero degree: 

 
 1 max ( )k k k

z p pX X rl D ϕ= +

 

(4) 
 

One point in the left hand side hypercube:  
 
 1 max 2 max( / 2)k k k

l p pX X rl D rϕ θ= + −

 

(5) 
 

And one point in the right hand side hypercube: 
 
 1 max 2 max( / 2)k k k

r p pX X rl D rϕ θ= + +

 

(6) 

 
where, 1

nr ∈R  is a normally distributed random number with mean 0 and standard deviation 
1 and 1

2
nr −∈R  is a random sequence in the range (0, 1). 1

max
nRθ −∈  is maximum pursuit 
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angle. The maximum pursuit distance maxl  is calculated from: 
 

 2
max

1
( )

n

i i i i
i

l U L U L
=

= − = −∑  

 
where, iL  and iU  are the lower and upper bounds for the thi  dimension. 

(2) The producer will then find the best point with the best resource (fitness value). If the 
best point has a better resource than its current position, then it will fly to this point. 
Or it will stay in its current position and turn its head to a new angle: 

 
 1

2 max
k k rϕ ϕ α+ = +

 

(7) 
 
where, maxα  is the maximum turning angle. 

(3) If the producer cannot find a better area after a  iterations, it will turn its head back to 
zero degree: 

 
 k a kϕ ϕ+ =

 

(8) 
 
where, a is a constant. 

At the thk  iteration, the area copying behavior of the thi  scrounger can be modelled as a 
random walk towards the producer: 
 
 1

3 ( )k k k k
i i p iX X r X X+ = + −

 

(9) 

 
where, 3

nr ∈R  is a uniform random sequence in the range (0, 1). 
Besides the producer and the scroungers, a small number of rangers have been also 

introduced into our GSO algorithm. Random walks, which are thought to be the most 
efficient searching method for randomly distributed resources, are employed by rangers. If 
the thi  group member is selected as a ranger, at the thk  iteration, firstly, it generates a 
random head angle iϕ : 
 1

2 max
k k rϕ ϕ α+ = +  (10) 

 
where, maxα  is the maximum turning angle; and secondly, it chooses a random distance: 

 1 maxil a r l= ⋅  (11) 
and move to the new point: 
 
 1 1( )k k k k

i i i iX X l D ϕ+ += +  (12) 
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4. PARTICLE SWARM OPTIMIZER (PSO) ALGORITHM 

 
The PSO has been inspired by the social behavior of animals such as fish schooling, insects 
swarming and birds flocking Kennedy and Eberhart [19]. It involves a number of particles, 
which are initialized randomly in the search space of an objective function. These particles 
are referred to as swarm. Each particle of the swarm represents a potential solution of the 
optimization problem. The particles fly through the search space and their positions are 
updated based on the best positions of individual particles for each iteration. The objective 
function is evaluated for each particle and the fitness values of particles are obtained to 
determine which position in the search space is the best  Bergh and Engelbrecht [20] Using 
neighborhood with the guaranteed convergence PSO. 

In each iteration, the swarm is updated using the following equations:  
 
 ( ) ( )( 1) ( ) ( ) ( ) ( ) ( )

1 1 2 2- -k k k k k k
i i i i g iV V c r P X c r P Xω+ = + +  (13) 

 
 ( 1) ( ) ( )k k k

i i iX X V+ = +  (14) 
 
where iX  and iV represent the current position and the velocity of the thi  particle, 
respectively; iP  is the best previous position of the thi  particle (called bestP ) and gP  is the 

best global position among all the particles in the swarm (called bestG ); 1r  and 2r  are two 
uniform random sequences generated from )1,0(U ; and ω  is the inertia weight used to 
discount the previous velocity of the particle persevered [21]. 

 
 
5. PARTICLE SWARM HYBRID GROUP SEARCH OPTIMIZER (PS-GSO) 
 

The PS-GSO algorithm continues the classification model of PSO and GSO. Random 
search, angle search and step search are used at the same time. The PS-GSO is an improved 
PSO or GSO. The improvements are as follows: 1) Use the step search mechanism of PSO 
when the algorithm does not move forward. 2) Adopt angle search mechanism of GSO and 
step search mechanism PSO at the same time. 3) Deal with the boundary problem with the 
harmony search (HS) algorithm [22]. 

The realization of this hybrid optimization algorithm is as follows: 
In an n-dimensional search space, the thi  member at the thk  searching bout (iteration) has 

a current position k n
iX ∈R , the position of each member are initialized by random value 

before the start of the iterative search. 
At the thk  searching iteration, calculate the fitness of each member, take the position of 

the best members as the producer and denoted it as k
pX , and scan at zero degree first time, 

then search for a new position in front, left and right directions, respectively, by Eqs. (4-6) 
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to seek a better position. The remaining members are selected as the scroungers by certain 
probability randomly, which will participate in search with random steps and follow the 
producer by Eq. (9). The remaining group members are selected as the rangers, which will 
select search angle and search distance randomly by Eq. (10) and Eq. (11), and then move to 
the new position by Eq. (12). 

At the end of thk  searching iteration, the algorithm will use PSO search mechanism if the 
producer does not update, meaning satisfy Eq. (15). Meanwhile, the producer will be 
considered as the best position k

gP of PSO algorithm. If the algorithm enters the PSO 

algorithm for the first time, consider the scroungers and rangers as personal best position k
iP . 

Next time the personal best position k
gP will be selected by Eq. (17), which means the 

personal best position 1−kP at previous iteration will be replaced by the better position kX at 
current iteration, then receive the latest personal best position k

iP . 
 

 ( ) ( )1−≥ k
p

k
p XfXf  (15) 

 
 k k

g pP X=  (16) 
 
 1( , )k k k

i i iP M X P −=  (17) 
 

In the PSO search mechanism, the selection of particle inherits the group of GSO. The 
position and the velocity of each particle will be calculated by Eqs. (13 and 14). At the end 
of kth searching iteration, it will calculate the latest global best position k

gP . 

If ( ) ( )k
p

k
g XfPf < , at next iteration, the producer will be replaced by the latest global best 

position k
gP , as follow equation, 

 
 1k k

p gX P+ =  (18) 
 
After the thk )1( +  iterations, if )()( LowerBoundXX Ld

i
d
i <  or 

)()( UpperBoundXX Ud
i

d
i > , the scalar d

iX is regenerated by selecting the corresponding 
component of the vector from bestp  swarm randomly, which can be described as follows: 

 
 ( )d d

i i tX P= ， int( (1, ))t rand n=  (19) 
 

where d
tiP )( denotes the thd  dimension scalar of bestp  swarm of the tht particle, t denotes a 

random integer number and n  denotes the swarm sizes. The pseudo code for structural 
optimization by PS-GSO is listed in Table 1. 
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Table 1. Pseudo code for structural optimization by PS-GSO algorithm 

Set k = 0; 
Randomly initialize positions Xi , the velocity Vi  and head angles ϕi of all members; 
FOR (each member i in the group) 
WHILE (the constraints are violated) 
Randomly re-generate the current member Xi 
END WHILE 
END FOR 
WHILE (the termination conditions are not met) 
FOR (each members i  in the group) 
Calculate fitness: Calculate the fitness value of current member: f(Xi)  
Choose producer: Find the producer Xp of the group; 
The producer, scroungers and rangers update their position by the equations of GSO algorithm. 
Calculate the fitness of each individual; update the producer and the search angle. 
Check whether the algorithm move forward. If not, enter the PSO algorithm. If it does, skip the PSO 
algorithm. 
PSO algorithm: Update the best position Pk

g and the personal best position Pk
i by Eq. (13) and Eq. (14); 

Update the position and velocity via equations of PSO algorithm.  
Check whether each member of the group violates the variable boundary. If it does, calculated by Eq. (19). 
Calculate the fitness value of current member, and then update the best position Pk

g (the producer Xp) and the 
personal best position Pk

i. 
END FOR 
Set k = k + 1; 
END WHILE 

 
 

6. PS-GSO ALGORITHM WITH DISCRETE VARIABLES 
 

When using the PS-GSO algorithm in optimizing with discrete variables, because of the 
areas of cross-sections aren’t continuum, before optimization there will be a mapping 
function which makes the discrete section areas correspond to the continuum integer from 
small to large. Suppose a discrete set nA with n discrete variables, after arranging from 
small to large: 

 
 { }n 1 2 j nA X ,X ,...,X ,...X ,1 j n= ≤ ≤  

 
Employ a mapping function to replace the discrete values of nA  with its serial numbers 

like: 
 

 ( ) jh j X=  
 
The serial numbers replace the discrete values to keep searching with continuum values 

and avoid efficiency of search declining. Suppose that there are p members the search space 
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with D dimension. And the position of the thi  member is denoted with vector ix  like: 
 

 ( )1 2 d D
i i i i ix x , x ,...x ,...x ,1 d D,i 1,2,..., p= ≤ ≤ =  

 
in which, { }d

ix 1, 2,..., j,..., n∈ corresponds to the discrete variables{ }1 2 j nX ,X ,...,X ,...X by 

mapping function ( )h j . After that, all of the members search in the continuum space which 

is the integer space, as each component of vector ix  is integer. Accordingly, the producer, 
scroungers, rangers and particles become: 
 
 i iX floor(X )=  (20) 

 
in which floor is a function rounding to negative infinity. After that, there is no change with 
the objective function and constraints, which just before being substitution into, the iterated 
integer are turn into areas of cross-sections correspondingly by the mapping function. 

 
 

7. NUMERICAL EXAMPLES 
 

In this section, two spatial truss structures commonly used in literature are selected as 
benchmark structures to test the PS-GSO. A double layer reticulated shell structure is chosen 
to see the efficiency of the hybrid PS-GSO algorithm. For all the three algorithms, the 
population size is set to at 50. The inertia weight ω  decrease linearly from 0.9 to 0.4; and 
the value of acceleration constants c1 and c2 are set to be the same and equal to 0.8. For the 
GSO algorithm, 20% of the population is selected as rangers; the initial head angle 0ϕ of 

each individual is set to be 4/π . The constant a  is given by round ( )1+n . The maximum 
pursuit angle maxθ   is 2/ aπ . The maximum turning angle maxα  is set to be 22/ aπ . For the 
new hybrid algorithm (PS-GSO), the parameters are set to be the same as GSO and HPSO, 
except that the inertia weight ω  is set to be 0.9; and the value of acceleration constants c1 

and c2 are set to be the same and equal to 2. Different iteration numbers are used for different 
optimization structures, with smaller iteration number for smaller variable number structures 
and larger one for large variable number structures. 

 
7.1. Example 1: The 25-bar spatial truss structure 

The 25-bar spatial truss structure is shown in Figure 1. The material density is 0.1 lb/in3 and 
the modulus of elasticity is 10,000 ksi. The stress limits of the members are ±40,000 psi. All 
nodes in all directions are subjected to the displacement limits of ±0.35 in. Load case is 
listed in Table 2. There are 25 members, which are divided into 8 groups, as follows: (1) A1, 
(2) A2~A5, (3) A6~A9, (4) A10~A11, (5) A12~A13, (6) A14~A17, (7) A18~A21 and (8) A22~A25. 
The discrete variables are selected from the set D = {0.01, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 
3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6.0} (in2). The maximum number of iterations is 500. 
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Figure 1. The 25-bar spatial truss structure 

 
Table 2. Load cases for the 25-bar spatial truss structure 

Load case  
Node 

PX(kips) PY(kips) PZ(kips) 

1 0.0 20.0 −5.0 
2 0.0 −20.0 −5.0 
3 0.0 0.0 0.0 
6 0.0 0.0 0.0 
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Figure 2. Comparison of convergence rates for the 25-bar truss structure 
Table 3 shows the optimization solutions of 25-bar truss structure. Figure 2 gives the 

convergence rate of the three algorithms. The three algorithms can achieve the optimal 
solution after 500 iterations. But it can be seen from Figure 2 that it takes about 160 and 400 
iterations for the GSO and HPSO algorithms to converge respectively, while the PS-GSO 
algorithm only needs less than 50 iterations. 

 

Table 3. Design results for the 25-bar truss structure 

Optimal cross-sectional areas (in2) 
Variables 

PS-GSO GSO [18] HPSO [7] 
1 A1 0.01 0.40 0.01 
2 A2~A5 2.00 2.00 2.00 
3 A6~A9 3.60 3.60 3.60 
4 A10~A11 0.01 0.01 0.01 
5 A12~A13 0.01 0.01 0.40 
6 A14~A17 0.80 0.80 0.80 
7 A18~A21 1.60 1.60 1.60 
8 A22~A25 2.40 2.40 2.40 
Weight (lb) 560.59 563.52 566.44 

 
7.2. Example 2: The 72-bar spatial truss structure 

The 72-bar spatial truss structure is shown in Figure 3. The material density is 0.1 lb/in3 and 
the modulus of elasticity is 107psi. The stress limits of all the members are ±25ksi. All nodes 
in all directions are subjected to the displacement limits of ±0.25 in. The load cases are 
listed in Table 4. There are 72 bars, which are divided into 16 groups, as follows: (1) A1~A4, 
(2) A5~A12, (3) A13~A16, (4) A17~A18, (5) A19~A22, (6) A23~A30 (7) A31~A34, (8) A35~A36, (9) 
A37~A40, (10) A41~A48, (11) A49~A52, (12) A53~A54, (13) A55~A58, (14) A59~A66, (15) 
A67~A70 ,(16) A71~A72. The optional discrete variables are: D={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 
2.8, 2.9, 3.0, 3.1, 3.2}. The maximum number of iterations is 1000. 

 

Table 4. Load cases for the 72-bar spatial truss structure 

Load cases  
Node 

PX(kips) PY(kips) PZ(kips) 

17 5.0 5.0 -5.0 
18 0.0 0.0 0.0 
19 0.0 0.0 0.0 
20 0.0 0.0 0.0 
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Figure 3. The 72-bar spatial truss structure 

 
It can be seen from Table 5 that the PS-GSO algorithms achieve the best solution after 

1000 iterations, its result is statistically better than that of GSO and HPSO. Moreover, it can 
be seen from Figure 4 that the PS-GSO algorithm provides best convergence rates than that 
of the GSO and HPSO.  
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Figure 4. Comparison of convergence rates for the 72-bar truss structure 
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Table 5. Design results for the 72-bar truss structure 

Optimal cross-sectional areas (in2) 
Variables 

PS-GSO GSO [18] HPSO [7] 
1 A1~A4 2.1 1.7 2.1 

2 A5~A12 0.5 0.6 0.6 

3 A13~A16 0.1 0.1 0.1 

4 A17~A18 0.1 0.1 0.1 

5 A19~A22 1.5 1.3 1.4 

6 A23~A30 0.5 0.5 0.5 

7 A31~A34 0.1 0.1 0.1 

8 A35~A36 0.1 0.1 0.1 

9 A37~A40 0.5 0.6 0.5 

10 A41~A48 0.5 0.5 0.5 

11 A49~A52 0.1 0.1 0.1 

12 A53~A54 0.1 0.1 0.1 

13 A55~A58 0.2 0.2 0.2 

14 A59~A66 0.5 0.6 0.5 

15 A67~A70 0.5 0.4 0.3 

16 A71~A72 0.6 0.5 0.7 

Weight (lb) 386.81 388.08 388.94 

 
 

7.2. Example 3: A double layer spherical shell 

There are 6761 nodes and 1834 bars in the double layer shell structure and it shows in 
Figure 5. All bars are divided into three groups which are upper chords, lower chords and 
web members. The span of the shell is 83.6 meters long and the rise is 14 meters high. The 
layer highness between the upper and the lower chord is 1.5 meters. The shell structure is 
made of steel. And the elasticity modulus is 210 GPa, the density 7850kg/m3. The periphery 
nodes of the lower chord layer are joined with hinges. 

The target is the weight of the structure. The areas of cross-sections of bar members are 
selected as the design variables. Furthermore, all of the members are thin-walled circular bar 
which are selected from national standard GB8162-87 of China with 379 kinds of cross-
sections. The structure bears a single load case. Each node of upper chord layer bears a 
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vertical downward load of 50kN. All the nodes in all directions are subjected to the 
displacement limits of ±0.209m which is the span of 1/400. Every bar is subjected to the 
stress limits of ±215MPa. Meanwhile, the restriction of stability of bar members is 
considered in accordance with criterion. The maximum allowable slenderness ratio of 
pressure and pull bar is 180 and 300 respectively. The maximum number of iteration is 
limited to 200. 
 

 
Figure 5. A double layer spherical shell 

 
Table 6. Comparison of optimal solutions for a double layer spherical shell 

Optimal areas of cross-sections 
Optimal 

algorithms Upper 
chords 

Lower 
chords  

Web 
members 

Optimal weight 
(kg) 

PS-GSO φ89×4 φ73×4.5 Φ54×3.5 116898.01 

GSO [18] φ108×4 φ95×3.5 φ95×4 163954.70 

HPSO [7] φ108×4 φ83×3.5 φ89×3.5 148811.71 

 
Table 6 shows the optimization solutions of double layer spherical shell. Figure 6 gives 

the convergence rate of the three algorithms. The three algorithms can achieve the optimal 
solution after 200 iterations. But it can be seen from Figure 6 that it takes about 130 and 100 
iterations for the GSO and HPSO algorithms to converge respectively, while the PS-GSO 
algorithm only needs less than 15 iterations. It can be seen from Table 6 that the PS-GSO 
algorithms achieve the lightest structure, its result is statistically better than that of GSO and 
HPSO. Moreover, it can be seen from Figure 6 that the PS-GSO algorithm provides best 
convergence rates than those of the GSO and HPSO. 
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Figure 6. Comparison of convergence rates for the double layer spherical shell 

 
 

8. CONCLUSIONS 
 

In this paper, a new hybrid optimization algorithm named particle swarm-group search 
optimization (PS-GSO) handling discrete variables is presented based on the GSO, PSO and 
harmony search method. The PS-GSO algorithm for discrete variables has all the advantages 
that belong to the PS-GSO algorithm for continuous variables, and has faster convergence 
rate than the GSO and HPSO algorithms for discrete variables. It is the most efficient one of 
these three algorithms. The PS-GSO algorithm is tested by three spatial truss structures 
optimization problems. All the results show that the PS-GSO algorithm converges much 
quickly than the HPSO and the GSO. It is proved that the PS-GSO can be used for optimum 
problems with discrete variables efficiently. Compared with GSO and HPSO algorithm, the 
PS-GSO algorithm achieves convergent results during the early iterations, which illustrates 
the rapidly converging to the optimal solution by using the PS-GSO algorithm. 
 
Acknowledgements: The Corresponding author, Prof. Lijuan Li would like to thank the 
financially supporting by the National Natural Science Foundation of China (project 
numbers: 10772052, 51178121) and the Natural Science Foundation of Guangdong 
Province. (Project numbers: 8151009001000042, 9151009001000059). 

 
 

REFERENCES 
 

1. Dorigo M, Di Caro G, Gambardella L. Ant algorithms for discrete optimization, 
Artificial Life, 1999; 5: 137–72. 



PARTICLE SWARM-GROUP SEARCH ALGORITHM AND ITS APPLICATION TO...  
 

 

457

2. Kenndy J, Eberhart RC. Particle swarm optimization, Proceedings of the 1995 IEEE 
International Conference on Neural Networks, Piscataway, NJ, USA, 1995, pp. 1942-
1948. 

3. Barnard CJ, Sibly RM. Producers and scroungers: a general model and its application to 
captive flocks of house sparrows, Anim Behav, 1981; 29: 543−50.  

4. He S, Wu QH, Saunder JR. A novel group search optimizer inspired by animal 
behaviour ecology, Proceeding of the 2006 IEEE Congress on Evolutionary 
Computation, Vancouver, BC, Canada, 2006, pp, 4415-4421. 

5. Kaveh A, Shojaee S. Optimal design of scissor-link foldable structures using ant colony 
optimization algorithm,  Comput-Aided Civ Inf,  2007; 22: 56−64. 

6. Li LJ, Huang ZB, Liu F, Wu QH. A heuristic particle swarm optimizer for optimization 
of pin connected structures, Comput Struct, 2007; 85: 340–49. 

7. Li LJ, Huang ZB, Liu F: A heuristic particle swarm optimization method for truss 
structures with discrete variables, Comput Struct, 2009; 87: 435−43. 

8. He S. Prempain, Wu QH. An improved particle swarm optimizer for mechanical design 
optimization problems, Eng Optimiz, 2004; 36: 585−605. 

9. Perez RE, Behdinan K. Particle swarm approach for structural design optimization, 
Comput Struct, 2007; 85: 1579–88. 

10. He S, Wu QH, Saunders JR. Group search optimizer: an optimization algorithm 
inspired by animal searching behavior, IEEE Trans Evol Comput, 2009; 13: 973−9. 

11. Liu F, Xu XT, Li LJ. The group search optimizer and its application on truss Structure 
design, The 4th International Conference on Natural Computation, Jinan, China, 2008, 
pp. 688−692. 

12. Liu F, Xu XT, Li LJ. Group search optimization for design of space trusses, The 10th 
International Symposium on Structural Engineering for Young Experts, Changsha, 
China, 2008, pp. 854−858. 

13. Li LJ, Xu XT, Liu F. The group search optimizer and its application to truss structure 
design, Adv Struct Eng, 2010; 13: 43−51. 

14. Wu SJ, Chow PT. Intergrated discrete and configuration optimization of trusses using 
genetic algorithm, Comput Struct, 1995; 55: 695−702 

15. Ali Falakian, Seyed Yaser Mousavi, Hybrid genetic algorithm for structural design 
optimization, J Basic Appl Sci Res, 2011; 2: 256−61. 

16. Lee KS, Geem ZW, Lee SH, Bae KW. The harmony search heuristic algorithm for 
discrete structural optimization, Eng Optimiz, 2005; 37: 663−84. 

17. Geem, Zong Woo. (Ed.) Harmony search algorithms for structural design optimization. 
Berlin, Springer Verlag, 2009. 

18. Li Lijuan, Liu Feng. Group search optimization for applications in structural design, 
Springer Berlin / Heidelberg, 2011. 

19. Kennedy J, Eberhart RC. Swarm intelligence, Morgan Kaufman Publishers, 2001. 
20. Van den Bergh, Engelbrecht A. Using neighborhood with the guaranteed convergence 

PSO, Proceeding in 2003 IEEE Swarm Intelligence Symposium, USA, 2003, pp. 
235−242. 

21. Shi Y, Eberhart RC. A modified particle swarm optimizer. Proceeding of the IEEE 
International Conference on Evolutionary Computation, Piscataway, NJ, IEEE Press, 



S.K. Zeng and L.J. Li 

 

458 

1998, pp. 69−73. 
22. Lee KS, Geem ZW. A new structural optimization method based on the harmony search 

algorithm, Comput Struct, 2004; 82: 781−98. 


