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ABSTRACT

Over the past few years, swarm intelligence based optimization techniques such as ant
colony optimization and particle swarm optimization have received considerable attention
from engineering researchers. These algorithms have been used in the solution of various
structural optimization problems where the main goal is to minimize the weight of
structures while satisfying all design requirements imposed by design codes. In this paper,
artificial bee colony algorithm (ABC) is utilized to optimize different skeletal structures.
The results of the ABC are compared with the results of other optimization algorithms from
the literature to show the efficiency of this technique for structural design problems.
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1. INTRODUCTION

Optimization can be defined as finding solution of problems where it is necessary to
maximize or minimize an objective function within a search domain which contains the
acceptable values of variables while some restrictions are to be satisfied. There might be the
large number of variables in the search domain that maximizes or minimizes the objective
function while satisfying the restrictions. They are called feasible solutions and the solution
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which is the best among them are known as the optimum solution of the problem.

In structural optimization problems, the main goal is to minimize the weight or cost of
structures while satisfying necessary limitation of structure. To achieve this goal, over the
last decades many elegant and artificial optimization techniques have been successfully
applied to a wide range of structural optimization problems. In recent years, direct search
techniques based on the models of social interaction amongst organisms have been found
capable of producing very powerful and robust search mechanisms [1]. Techniques
belonging to this field imitate the collective behavior of a group of social insects (bees,
termites, ants and wasps) to solve complex optimization problems. These insects live
together in a nest and divide up the work tasks such as foraging, nest building and defense
within the colony. Members of the colony perform their tasks by interacting or
communicating in a direct or indirect manner in their local environment. The key feature of
colony behavior is that even if one or some individuals fail in carrying out their task, the
group as whole can still perform their tasks [2]. From the collective behavior in certain
insect species emerges the swarm intelligence. Swarm intelligence based algorithms
including particle swarm optimization (PSO) [3] and ant colony optimization (ACO)
algorithms [4] have already been used for the weight minimization of structures involving
discrete and continuous design variables. Swarm-based algorithms simulating bee swarm
intelligence recently found new application areas in engineering design optimization.
Karaboga and Basturk [5] presented a survey of these algorithms and their applications.
Most of these algorithms make use of the bee metaphor imitating the food foraging
behaviors of honeybees such as, the bee colony optimization algorithm [6,7], the Virtual
Bee algorithm [8], the bee algorithm [9,10] and the Artificial bee colony algorithm [11- 13].

Karaboga and Basturk [11,12] proposed the artificial bee colony (ABC) algorithm for
unconstrained and constrained function optimization problems. The performance of the
ABC algorithm was compared to that of differential evaluation, particle swarm optimization
and an evolutionary algorithm. They declared that the ABC algorithm performed better than
these methods and it can be effectively employed to solve engineering problems [14,15].

There are many research applied the ABC algorithm to different optimization algorithms.
This study utilizes the ABC Algorithm to optimum design of skeletal structures. The rest of
the paper is organized as follows: Section 2 presents the formulation of optimum design of
structures. The framework of the ABC algorithm is described in Section 3. Numerical
examples are presented in Section 4 and finally Section 5 concludes the paper.

2. OPTIMUM DESIGN OF STRUCTURE

The objective of optimization is to find a set of design variables that has the minimum
weight and also satisfies certain constraints, as

Find {X}: {X1'X2""’Xng} (1)
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Tominimize  w({x})= in:;zﬁi 1.x )

subject to 0:({x})<0,j ;1,2,...,n (3)

where {x} is the set of design variables; ng is the number of design variables; D; is the
allowable set of values for the design variable x;; w({x}) presents the weight of the structure;
nm is the number of members of the structure; ¢; denotes the material density of member i;
Li and x; are the length and the cross-sectional of member i, respectively; g;({x}) denotes
design constraints; and n is the number of the constraints.

D; can be considered either as a continuous set or as a discrete one [16]. In the
continuous problems, the design variables can vary continuously in the optimization process

D, = P/ € [, i %o e )| @

where X min and X; max are minimum and maximum allowable values for the design variable x;,
respectively. If the design variables represent a selection from a set of parts as

D, =d; 1,0 500, | (5)

then the problem is considered as a discrete one, where r is the number of available discrete
values. In order to handle the constraints, a penalty approach is utilized. In this method, the
aim of the optimization is redefined by introducing the penalty function as

fpenalty(x) = (1+ gl 'V)EZ x W({X}) V= i maX( 0! gi,max ) (6)

i=1

where V denotes the sum of the violations of the design. The constant ¢; and &, are selected
considering the exploration and the exploitation rate of the search space. Here, ¢; is set to
0.9, &, is set unity [17].

This paper investigates two types of skeletal structures consisting of trusses and frames.
The constraint conditions for these structures are briefly explained in the following
subsections.

2.1. Constraint conditions for truss structures

For truss structures, the stress limitations of the members are imposed according to the
provisions of ASD-AISC [18] as follows:

(1)

o; =06f, 0,20
(of o, <0

where o is calculated according to the slenderness ratio:
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where E is the modulus of elasticity; F, is the yield stress of steel; C. denotes the
slenderness ratio dividing the elastic and inelastic buckling regions; A presents the
slenderness ratio.

The other constraint is the limitation of the nodal displacements, as

0, <6 i=12,...,nn 9)

where §; is the nodal deflection; &' is the allowable deflection of node i; and nn is the
number of nodes.

2.2. Constraint conditions for steel frames

Optimal design of frame structures is subjected to the following constrains according to
LRFD-AISC [19] provisions:

AT
—1L <R
H (10)
%s R, i=12,..,ns (12)
M
if P >0 P +§( M, +—2)<1.0 (12)
(Dt pn (Dt pn 9 @anX (Dany
M
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where A, is the maximum lateral displacement; H is the height of the frame structure; R is
the maximum drift index (1/300); d; is the inter-story drift; h; is the story height of the ith
floor, ns is the total number of stories; R; presents the inter-story drift index permitted by the
code of the practice (1/300); P, is the required strength (tension or compression); P, is the
nominal axial strength (tension or compression); ¢, is the resistance factor ( ¢, = 0.9 for
tension, ¢, = 0.85 for compression); My, and M, are the required flexural strengths in the x
and y directions, respectively; My and M, are the nominal flexural strengths in the x and y
directions (for two-dimensional structures, M, =0); and ¢, denotes the flexural resistance

reduction factor (¢, = 0.90).



OPTIMIZATION OF SKELETAL STRUCTURAL USING ARTIFICIAL BEE... 561
3. ARTIFICIAL BEE COLONY ALGORITHM

The foraging behavior, learning, memorizing and information sharing characteristics of
honeybees have recently been one of the most interesting research areas in swarm
intelligence. The ABC algorithm as a swarm intelligent optimization algorithm is inspired
by honey bee foraging. This section reviews the framework of the algorithm, briefly.

3.1. General aspects

The ABC provides a population based search procedure in which individuals called foods
positions are modified by the artificial bees with time and the bees aim is to discover the
places of food sources with high nectar amount and finally the one with the highest nectar.
In the ABC system, artificial bees fly around in a multidimensional search space and some
(employed and onlooker bees) choose food sources depending on the experience of
themselves and their nest mates, and adjust their positions. Some (scouts) fly and choose the
food sources randomly without using experience. If the nectar amount of a new source is
higher than that of the previous one in their memory, they memorize the new position and
forget the previous one. Thus, the ABC system combines local search methods, carried out
by employed and onlooker bees, with global search methods, managed by onlookers and
scouts, attempting to balance exploration and exploitation process. This model that leads to
the emergence of collective intelligence of honeybee swarms consists of three essential
components: food sources, employed foragers, and unemployed foragers, and defines two
leading modes of the honeybee colony behavior: requirement to a food source and
abandonment of a source. The main components of this model are as below:

1. Food sources: In order to select a food source, a forager bee evaluates several
properties related with the food source such as its closeness to the hive, richness of the
energy, taste of its nectar, and the ease or difficulty of extracting this energy. For the
simplicity, the quality of a food source can be represented by only one quantity although it
depends on various parameters mentioned above.

2. Employed foragers: An employed forager carries information about her specific
source and shares it with other bees waiting in the hive. The information includes the
distance, the direction and the profitability of the food source.

3. Unemployed foragers: A forager bee that looks for a food source to exploit is called
unemployed. It can be either a scout who searches the environment randomly or an onlooker
who tries to find a food source by means of the information given by the employed bee.

3.2. The algorithm

The flowchart of the ABC algorithm is given in Figure 1. Each cycle of the search consists
of three steps after initialization stage: placing the employed bees onto the food sources and
calculating their nectar amounts; placing the onlookers onto the food sources and
calculating the nectar amounts; and determining the scout bees and placing them onto the
randomly determined food sources.
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Figure 1. Flowchart of the ABC algorithm

In the ABC algorithm, the first half of the colony consists of the employed artificial bees
and the second half includes the onlookers. In this algorithm, for every food source, there is
only one employed bee. In other words, the number of employed bees is equal to the number
of food sources around the hive. The employed bee whose food source has been abandoned
becomes a scout.

The position of a food source represents a possible solution to the considered
optimization problem and the nectar amount of the food source corresponds to the quality or
fitness of the associated solution. The number of the employed bees or onlooker bees is
equal to the number of solutions in the population. In the first step, the ABC algorithm
generates randomly distributed predefined number of initial population, P (position of the
food sources) of SN populations, where PeSN. Each position of the food source, Xijk is
three-dimensional in nature with i=1,2,...,.SN; j=1,2,....D and k=1,2,...,V; where D is the
dimension of each variable and V is the number of variables in the objective function. After
initialization, the population of the positions (solutions) is subjected to repeated cycles,
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C=1,2,...,.MCN (maximum cycle number) of the search process of the employed bees,
onlooker bees and scout bees. An employed bee produces a modification on the solution in
its memory depending on the local information and tests the nectar amount (fitness value) of
the new food source (new solution). Provided that the nectar amount of the new source is
higher than that of the previous one, the bee memorizes the new position and forgets the old
one. Otherwise, it keeps the position of the previous source in its memory. When all the
employed bees complete the search process, they share the nectar information of the food
sources and their position information with the onlooker bees in the dance area. An
onlooker bee evaluates the nectar information taken from all the employed bees and selects
a food source with a probability related to its nectar amount. As in the case of an employed
bee, the onlooker bee produces a modification on the position in its memory and checks the
nectar amount of the candidate source. If its nectar amount is higher than that of the
previous one, the onlooker bee memorizes the new position and forgets the old one.

4. NUMERICAL EXAMPLES

Four truss and frame examples are selected to show efficiency and validation of the ABC
algorithm containing:

o A 25-bar truss

o A 72-bar truss

e A 1-bay, 8 story frame

e A 3-bay, 15-story frame

All of the structural analysis as well as the optimization process are performed by

MATLAB software and the ABC algorithm parameters are set as follows: a colony of bees
size NP=50, the maximum number of cycle MNC=300, and LIMIT=50.

4.1. A 25- bar truss

The topology and nodal numbers of a 25-bar spatial truss structure are shown in Figure 2. In
this example, designs for a multiple load case are performed and the results are compared to
those of other optimization techniques [14,20,21]. The material density is considered as 0.1
Ib/in® (2767.990 kg/m®) and the modulus of elasticity is taken as 10,000 ksi (68,950 MPa).
This spatial truss is subjected to two loading as described in [20].

In order to study the effect of the colony size on the convergence rate of the ABC
algorithm, ten different colonies consisting of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 bees
were used. The averages of each set of 10 independent runs for each colony are given in
Figure 3 where the objective function versus cycle numbers is shown. It can be seen from
this figure that the convergence rates increase with greater numbers of bees. After 300
cycles, with the exception of the colony of 10 bees the results of all the colonies are very
close to each other and they have almost the same weight. The colony size may be set at any
value between 30 and 100. However, larger values increase the required analysis number
and with small ones, the probability of losing the optimum design increase; as a result, in
the current research the colony size is set at 50 bees for all examples. Table 1 compares the
obtained result by this study with other methods. The present algorithm needs only 15000
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analyses to find the optimum result while it is 30000 for standard ABC [14].
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Figure 3. Comparison of the convergence rates of ABC with ten different colony sizes

Table 1. Performance comparison for 25-bar space truss
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Optimal cross section area

Elementgroup | Aco[22] BB-BC [21] Sta”d[ﬁ ABC This study
1 A 001 001 0.011 001
2 ArAs 2082 2092 1.979 21157
3 Ac-A, 3001 2.964 3.003 2.9149
4 Ap-Au 001 001 001 001
5  Ap-As 001 001 001 001
6  Au-A; 0684 0.689 0.690 0.7832
7 Aup-Ay 1625 1.601 1.679 1.6032
8 An-As 2762 2.686 2.652 2.5654
Best weight 545.03 545.38 545.20 545.20
Analysis number 3502 20566 30000 15000

3.2. 72- bar truss

For the 72-bar space truss structure shown in Figure 4, the material density is 0.1 Ib/in®
(2767.990 kg/m®) and the modulus of elasticity is 10,000 ksi (68,950 MPa). The members
are subjected to the stress limits of 25 ksi (172.375 MPa). The uppermost nodes are
subjected to the displacement limits of 0.25 in (0.635 cm) in both the x and y directions. The
minimum permitted cross-sectional area of each member is 0.10 in (0.6452 cm?), and the
maximum cross-sectional area of each member is 4.00 in” (25.81 cm?).
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Figure 4. 72- bar spatial truss
Table 2. Performance comparison for 72-bar spatial truss
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Figure 5 presents the convergence characteristic curve of the ABC. For this spatial truss
structure, it takes about 500 iterations (15000 analyses) for the ABC to converge, while it is

S. Talatahari, M. Nouri and F. Tadbiri

Element group

Optimal cross section area

ACO [24] BB-BC [21] GA[23] This study

1 Al -A 1.948 1.8577 1.755 1.909
2 As- Arp 0.508 0.5059 0.505 0.520
3 Az — A 0.101 0.1000 0.105 0.100
4 A7 - Agg 0.102 0.1000 0.155 0.100
5 Ag— Az 1.303 1.2476 1.155 1.284
6 Az — Ago 0.511 0.5269 0.585 0.503
7 Asi — Agy 0.101 0.1000 0.100 0.100
8 Ags —Asg 0.100 0.1012 0.100 0.100
9 Azr —Ag 0.561 0.5209 0.460 0.512
10 Au-Agg 0.492 0.5172 0.530 0.523
11 Ap-As 0.100 0.1004 0.120 0.100
12 Asz-Agy 0.107 0.1005 0.165 0.100
13 Ass-Agg 0.156 0.1565 0.155 0.157
14 Asg—Acs 0.550 0.5507 0.535 0.537
15 Ay —Ap 0.390 0.3922 0.480 0.410
16 An-Axn 0.592 0.5922 0.520 0.563
Best weight 380.24 379.85 385.76 379.70
Analysis number 18500 20566 15000

1000

Effect of ABC algorithm on weight of 72 bar spatial truss
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Figure 5. Convergence history of the best result obtained by the ABC
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18500 and 20566 for the ACO [24] and BB-BC [21], respectively. Compared to the other
methods, the best weight is belonged to the ABC with the weight of 379.70 Ib. These results
demonstrate the efficiency of the ABC compared to GA [23], ACO and BB-BC methods.
Table 2 compares the performance of the ABC algorithm with those of the previously
reported algorithms in the literature.

3.3. 1-bay 8- story frame

Figure 6 shows the configureuration of the 1-bay 8-story framed structure and applied loads.
Several researchers have developed design procedures for this frame; Camp et al. [25] used
a genetic algorithm, Kaveh and Shojaee [26] utilized ACO and Kaveh and Talatahari [22]
applied an improved ACO to solve this problem.

A 4448 kN (100 kips) downward
load 1s applicd at cach connection

12.592 kN % -
(2.831 kips)
4 4
8.743 kN - 8
(1.905 kips) ™|
4 4
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(1.633 kips)y 7|
3 3
6.054 kKN 7
(1.361 kips)
3 3
4.839 kN . 6 84:3.04m
(1.088 kips) ™| (19
2 2
1630 kN 6
(0.816 kips)
2 2
2420 kN 5
(0.544 kips) »
I I
L2ZI0 kN - 3
(0.272kips) |
I 1
} 3.04m ‘
(10

Figure 6. 1-bay 8-story frame
The ABC algorithm found the optimal weight of the one-bay eight-story frame to be
30.91 kN which is the best one compared to the other method. Table 3 lists the optimal



568 S. Talatahari, M. Nouri and F. Tadbiri

values of the eight design variables obtained by this research, and compares them with other
results.
Table 3. Optimal design comparison for the 1-bay 8-story frame

Optimal W-shaped sections
GA[25] ACO [26] IACO [22] This study

Element group

1 W18X35 WI16X26  W21X44 W21X44
2 W18X35 WI18X40  W18X35 W16X26
3 W18X35 WI18X35  W18X35 W14X22
4 W18X26 WI14X22  WI12X22 W12X16
5 W18X46 W2IX50  W18X40 W18X35
6 W16X31 WI16X26  WI6X26 W18X35
7 W16X26 WI16X26  WI16X26 W18X35
8 WI12X16 WI12X14  Wi2X14 W16X26

Weight (kN) 32.83 31.68 31.05 30.91

4.4. Design of a 3-bay, 15-story frame

The configureuration and applied loads of a 3-bay 15-story frame structure is shown in
Figure 7. The displacement and AISC combined strength constraints are the performance
constraint of this frame.

Table 4. Optimal design comparison for the 3-bay, 15-story frame

Optimal W-shaped sections
PSO [16] HBB-BC [28] ICA[27]  This study

Element group

1 W33X118 W24X117 W24X117  W36X135
2 W33X263 W21X132 W21X147  W27X146
3 W24X76 W12X95 W27X84  W24X94
4 W36X256 W18X119 W27X114  W14X109
5 W21X73 W21X93 WI14X74  W24X68
6 W18X86 W18X97 W18X86  W21X93
7 W18X65 W18X76 W12X96  W30X90
8 W21X68 W18X65 W24X68  W18X65
9 W18X60 W18X60 W10X39  WI16X36
10 W18X65 W10X39 WI12X40  WI16X40
11 W21X44 W21X48 W21X44  W21X44
Weight (Kips) 111.66 97.69 93.85 93.76

The optimum design of the frame obtained by using ABC has the minimum weight of
93.76 kip. The optimum designs for PSO [16], HBB-BC [28] and ICA [27] had the weight
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of 111.66 Kips, 97.69 kips and 93.85 Kips, respectively. Table 4 summarizes the optimal
results for the various algorithms. Clearly, it can be seen that the present algorithm can find

better design.
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Figure 7. 3-bay, 15-story frame
5. CONCLUSION

3.5m

The ABC algorithm, based on mimicking the food foraging behavior of honeybee swarms,
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is proposed to solve structural optimization problems containing truss and frame structures.
Optimization software based on the ABC algorithm was coded in the MATLAB with using
object-oriented technology. Four test problems were studied using the optimization program
to show the efficiency of the ABC algorithm. The comparison of the results of the ABC with
those of other algorithms demonstrated that the ABC algorithm provides results as good as
or better than other algorithms and can be used effectively for solving such problems.
Expanding and hybridizing this method can provide a fruitful era to find more efficient and
powerful methods to optimum design of skeletal structures.
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