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ABSTRACT

Dynamic structural responses via time history asialyare highly dependent to
characteristics of selected records as the seisxtdation. Ground motion scaling is a
well-known solution to reduce such a dependencyiaagkase reliability to the dynamic
results. The present work, formulate a twofold peobfor optimal spectral matching and
performing consequent sizing optimization based soich scaled ground motion via
numerical step-by-step analyses. Particle swarnimagdtion as a widely used meta-
heuristic is specialized and improved to solve fhizblem treating a number of examples.
The scaling error is evaluated using both tradétiggrocedure and the developed method. In
this regard, some issues are studied includingtieet of structural period and shape of the
design spectrum on the results. Contribution ofgh@posed enhancement on the standard
particle swarm intelligence has improved its expliwe capability resulting in higher
efficiency of the algorithm.
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1. INTRODUCTION

Several code-specific or practical procedures ia #eismic design or vulnerability
assessment require earthquake time-history redordle step-by-step analysis procedures
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[1-3]. It includes analysis of non-linear systeros Which superposition is not reasonable
[3-4]. The main challenge to use time-history inpetords is case-dependency of them and
impossibility of earthquake prediction. Hence, &ue source of decision making based on
time history analysis is not available becausedtnectural responses varies as the input
record is changed. On the other hand, well-knowsnse codes have introduced a number
of linear spectra as a legal input source of design

One solution for this problem is to make pure eiif records and filter them according
to the site characteristics [4, 5] or to recondtthe real record so that its spectrum fit the
target standard [6, 7]. None of these approachesepre frequency content and many other
seismic characteristics of the recorded earthgsael. According to the common practice
in the seismic codes, a set of real records aledsty their amplitudes in order to match a
target standard spectrum [8-10]. As the smoothgdesipectrum is constructed on a
statistical basis covering a variety of previoudlegguakes, no single one may exactly match
it. Common manual/code-practice accepts equalregaoefficients for all the records in
such a set which usually causes considerable cdmipgterror in the resulting scaled
spectrum with respect to the target.

Reduction of such an error is concerned here bynaphg the scaling factor for any
selected set of earthquake accelerograms distindkyse real-valued factors are measured
with respect to each other, thus the cardinalitguafh a continuous design space is infinity.
The matter emphasizes necessity of using efficelgorithms to deal with such a
continuous problem.

In this regard, the present work offers an improsedrch algorithm in the category of
swarm intelligence which mimics the behaviour afunal swarms such as bird flocks or ant
colonies to achieve their desired goal [11-19]. H®ificiency and effectiveness of the
developed method is then evaluated in a numbekamples showing its superiority over
the common practice according to the seismic desigie. Further sizing design is
performed using the obtained sets of scale fad¢tomesvaluate economical contribution of
optimal ground motion scaling on structural desgbuilding frames.

2. PROBLEM FORMULATION

2.1 Spectral matching optimization

Suppose a set dfl horizontal earthquakes is given. At this staljesingle spectra are
provided whose weighted average should not fabwehe target spectrum according to the
Iranian code of seismic design ICPSRDB 2800-05ThE optimization problem of spectral

matching is thus formulated as follows to tunewtséghting factorsg;:

Maximize F(a,,....ay)=1/Err 1
St. 0.550,< 2.0 ()

for which F denotes the fitness function and the matching gro, is computed as:
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and g imposes the mean spectruga, , (T) , to fall equal or greater than the target within
the specified period interval. It is calculated as:

ﬂ — max{saTarga (T)

P e, (M) 3)

2.2 Frame sizing optimization

Once a set of scale factors for the employed eaatke) records is determined either
manually (equal factors) or via the spectral matghoptimization, another issue is
activated; that is to optimize the building franeetoons under the scaled ground motion.

In this regard, the dynamic results should be &irtombined with the static response of
the structure under gravitational loading (e.g.ddaad live loads). IN is less than 7 the
maximum response out N dynamic excitations is used; otherwise the meamanyc
response is considered according to the seismigrdesde ICPSRDB 2800-05.

The new optimization problem is to minimize theustural weight for the assigned
frame sections providing that all the addressingsstdisplacement limitations of the design
code are satisfied. In this study the allowablesstrdesign requirements due to AISC-
ASD89 and ICPSRDB 2800-05 are employed. The folgwpenalty function is used to
evaluate equivalent fitness function.

Fitness=~f (x,,....x, ) *1+K,>_C)) (4)

in which f stands for the objective function (weight), denotes thé™ constraint violation
andK, is the employed penalty coefficient. The sectiodidges assigned to thre member
groups are denoted by =< x,,....X, > as the structural design vector.

Here-in-after any frame is modeled as a shear ipgilavith one horizontal degree of
freedom at each storey level which is consideredjid floor. In order to indirectly apply
the geometric constraint, section indices in th&igievector are sorted in descending order
before fithess evaluation; that is to insure naigoi section in any lower storey is lighter
than the upper storey column.

3. SWARM INTELLIGENCE BASICS

Complexity of many engineering problems has madeitlestigators to approach meta-
heuristic search; the algorithms usually inspireg drtificial behaviour of natural
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populations to seek their proper goals. Swarmligagice is based on two main capabilities
of the searching agents: self organization andangrgy. The former enables any particle in
the swarm to move,; i.e. to alter a solution can@idburing optimization based on its own
experience. Stigmergy stands for the effect of mvhent on an agent which is addressed
by gathering information from the solution candetatliscovered by other search agents.

One of the well-known algorithms in the swarm ihgeince category is Particle Swarm
Optimization, PSO, introduced by Eberhart and Kelyri@1, 12]. Any search agent in PSO
is called a particle taking its location vector Xaint or solution candidate in the search
space. After completing the random initiation ofe tiparticles’ population with a
predetermined size, any new solution at the nexationk+1, is discovered by the particle
using the following relations:

l|k+l:llk +\le (5)
VI = oV E o, (X - XE) + o, (X - X)) ©

in which ¢ ,c.,c, stand for inertial, cognitive and social factor&ld is a function giving
random numbers between 0 andxl”™ denotes the best pervious position that a particle
has already experienced whike® is the global best position among the entire swarm

The former mimics the cognitive and the latter med®cial relations in a natural (bird’s)
swarm to find the optimal position.
Such a terminology can be used in the followingrojation algorithm:

1. Select PSO parameterBopSize, Numlters, ¢ ,c.,Cq

2. InitiatePopSizenumber of solution candidates and their velocityctoesy, ,

randomly.
3. Evaluate the particles fitness values

4. Determine the best position experienced by é¢&gtarticle during its search ag™
5. Identify X% as the fittestX wa among all current swarm particles using:
j =arg(maxFitness X)), ()

Reposition particles according to Eq.6 to form mepulation of particles
Repeat the steps 3 to 6 for a predetermiNeghiters number of iterations.

No

4. ENHANCED PARTICLE SWARM OPTIMIZER

Performance of a meta-heuristic algorithm highlypeteds on proper balance between
intensification and diversification. Intensificatioprovides exploitation or local search
capability while diversification is also needecetglore new parts of the search space.

In this regard, a modified version of the algorithoalled MPSO, is offered here
substituting the Eq.6 with the following relation:
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VI =r gV +re (X = X[ ) +re (X - X[)+ (1—ﬁ)r Cr (X = X{) (8)
umitr

In the above relation three modification strategies employed to enhance the standard
PSO: First, a random generator is added to theiahéerm providing more exploration
during the search. As the second strategy, passimgregation [16] is employed by an
additional movement toward,; denoting a randomly picked particle over the entr
swarm. The last improvement is multiplying tHBtdrm factor,cg, by linearly degrading

k
Numltr) '

These modifications are designated to add morersifigation in early stages of the
search and more intensification as the search @ssgn order not to loose the near optimal
solution found in the last iterations. Fig. 1 shdlesvchart of the proposed MPSO while its
performance is tested and compared with the stdrfl8O in the next section.
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Figure 1. Flowchart of the proposed optimizatiogoaithm

5.NUMERICAL EXAMPLES

A 6-storey and a 13-storey steel frame, both witlags are treated to illustrate the concepts
of this study over low- and medium-rise buildinggpical storey height and bay length are



298 M. Shahrouzi and A. Mohammadi

3 and 5 meters, respectively. The floor massexamgputed using the uniform dead load
plus 20% of the live load. During optimization, exvenember group is assigned a structural
profile among 31 European standard Sections asdlist Table 1. All the sections are
constructed from steel grade St-37. For the sakeaf computational efficiency during
several dynamic analyses and to reduce the sepade size, member grouping is fixed at
every storey as depicted in Fig. 2.
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Figure 2. Member grouping for (a) 6 storey-2 bag ér) 13 storey-2 bay frames with rigid
floors
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Table 1: Section list for sizing optimization

Section Section  Section Section Section Section
Index Name Index Name Index Name
1 IPE120 12 IPE400 23 TUBO220X220X20
2 IPE140 13 IPE450 24 TUBO240X240X20
3 IPE160 14 IPE500 25 TUBO260X260X20
4 IPE180 15 IPE550 26 TUBO280X280X20
5 IPE200 16 IPE60O 27 TUBO300X300X20
6 IPE220 17 TUBO100X100X10 28 TUBO320X320X20
7 IPE240 18 TUBO120X120X20 29 TUBO340X340X20
8 IPE270 19 TUBO140X140X20 30 TUBO380X380X20
9 IPE300 20 TUBO160X160X20 31 TUBO400X400X25
10 IPE330 21 TUBO180X180X20
11 IPE360 22 TUBO200X200X20

Stress and drift constraints are evaluated undenboted static gravitational and
dynamic seismic loading. The allowable storey dafe determined regarding Iranian
Standard 2800 whereas the building frame is assumbdve a behavior factor Rf=5 and
be located at theery high seismic zone. Combined bending and axial stresssraire
evaluated using the AISC-ASD89 procedure [20].

o L _Iz<gl‘_ . kof .
Gravitational loading includes dead load of 2> and live load of 5(; uniformly

exerted on the floor beams. Meanwhile, the dyndacling is implemented as the base
excitation using a set of 7 accelerograms as gimemable 2 taken from PEER strong
ground motion database [21]. Variety of resulteelcsfa can be observed in Fig. 3. They are
generated for 5% damping ratio as offered in thgigiecode [1]. Each accelerogram is
scaled before being used in the dynamic analysigyusither method: manual practice,
optimized with PSO or with MPSO. In the manual/cqutactice ally; factors are taken
unity then scaled by to construct equal scale factors so that the tiaguinean spectra do
not fall below the target within the period rand®ZTg qwe ~1-Fgrawe. Such a period

interval is due to ICPSRDB 2800-05 dependent to the.. estimated based on the
frame’s total height (in meters), H, using theduling design code relation [1]:

T

Structure

=0.08H°7 (9)

Table 2: The set of earthquake components for sglenatching

Record 1 2 3 4 5 6 7
L ocation Cape. Landers Northridge Northridge Cape. Tabas Tabas
Mendocino Mendocino

Date 1992-4-25 1992-6-28 1994-1-17 1994-1-17 1992-4-25 97819-16 1978-9-16
Station Petrolia Yermo NewHall Tarzana Rio Dayhook Tabas
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Figure 3. Normalized spectra of the employed earkgs for 5% damping

In the spectral matching optimization, thiefactors are derived using a presented swarm
intelligent algorithm and then multiplied by propgrto generate the resulting set of scale
factors.

Before scaling, each accelerogram is normalizeitistpeak ground acceleration, PGA.
Thus the seismic hazard effect due to the desige barthquake and seismicity of the site
zone should be taken into consideration prior toadyic analysis. In addition, nonlinear
effects are indirectly estimated by the structusehavior factor R according to the
allowable stress design procedure of ICPSRDB 2&)0-Bence, the normalized
accelerograms not only are scaled by the facterdtesl from spectral matching but also are

further multiplied by = PGA%? to be used in the linear step-by-step analysise Hbe

building importance factot is taken 1 whilePGA=0.35g for very high seismic zone due

to ICPSRDB 2800-05.
Table 3 gives the control parameters used for PSDMPSO during spectral matching

and sizing optimization. Notify thaiz is only used in MPSO. A Diversity Index, DI, is @ls

defined as the coefficient of variation among thepylation of design vectors. The
randomly initiated population is identically empémy for both algorithms in every
comparison. A penalty coefficient ok, =100 is used for the sizing design to insure

satisfaction of structural constraints.
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Table 3: The employed control parameters for o@tmn

Problem Algorithm PopSize  Numiters C Cc Cs Cr
PSO 10 150 1 1 1
Spectral
M atching MPSO 10 150 1 1 1 4
Frame PSO 20 100 1 1 1 -
Sizing MPSO 20 100 1 1 1 4

5.1 The 6-storey 2-bay example

For the first test, the normalized spectrum of IGRP8 2800-05 using soil type | is
considered as the target for spectral matchinginvittie period interval0.060 ~ 0.445.

The natural period of this structure 6699 sbased on Eq. 9. Results of the three scaling

methods are compared against the target in Fidveteras the period interval is identified by
the dashed lines. As declared in this figure, #sults are considerably closer to the design
spectrum for optimized cases than manual; howeeof them satisfy to be over the target
spectrum in the suited period interval. It can digorealized that the MPSO method has
resulted in the most compatible spectrum with #rgdt among the three methods. Fig. 5
better shows superiority of the MPSO over PSO meng higher fitness during spectral
matching optimization. Table 4 declares that theghemployed scaling methods have
resulted in three scale factor sets different freach other. According to Table 5, the
manual practice has resulted in about 27% spextrapatibility error while it is reduced to
19% and 15% for PSO and MPSO, respectively. Sudriation in the scaling factors and
the resulting errors, confirms importance of opgation in this problem.

3.5 5 T

a= Target
=3 - Manual
PSO
MPSO

250 f

15¢

Normalized Spa

0.5F

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Period (sec)

Figure 4. Comparison of various mean scaled speatitahed for the period interval of 6
storey-2 bay frame example with the target desmgtsum (5% damped - soil type 1)
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Figure 5. Convergence of MPSO compared with PS&péttral matching of 6 storey-2 bay
frame on soil type |

Table 4: Resulted scale factors for 6 storey-2doample on soil type |

Scalin

M etho?j a, a, as a, as as a, B Y

Manual 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.411 7000
PSO 2.000 0.500 0.500 2.000 2.000 0.500 0.500 1.226 7000

M PSO 0.500 0.500 0.500 1.794 2.000 0.500 0.500 1.510 7000

Table 5: Spectral matching and frame sizing redalt§ storey-2 bay example on soil type |

Scaling Spectral Matching  Fitness Improvement  Sizing Minimized
M ethod Error (%) (%) M ethod Weight (kg)
Manual 26.9 - MPSO 2459.3
PSO 19.0 18.7 - -
MPSO 15.4 46.6 M PSO 2291.2

In algorithmic point of view, the fitness improventewith respect to the initial
population has been 46.6% for MPSO which is comalalg greater than 18.7% for PSO.
Consequently, using the optimal scale factors glweMPSO has resulted in better sizing
optimization with respect to applying the manualledactors. That is 7% improvement in
the minimized columns weight from 2459.3kg to 228d.

In order to investigate the effect of target spauotrshape on the spectral matching
results, the test is repeated with ICPSRDB 280@dXgn spectrum of soil type 11l for such
a very high seismicity region. According to Fig.nore difference between manual scaling
results and those of optimized scaling by PSO/M&P€vident with respect to the case of
stiff soil (type 1) in Fig. 4. In another word, aekiing spectral compatibility with such a
wider target spectrum is less than the case otygmal I, resulting in more matching errors as
given in Table 6. The error has growth form ne&il96 to 45% for manual scaling between
the previous and current case. Similar resultsohserved for optimized scaling errors of



OPTIMAL GROUND MOTION SCALING USING ENHANCED SWARMNTELLIGENCE 303

PSO and MPSO, however, less critical than the mamethod. Besides, MPSO has
obtained more fitness improvement than PSO corisgldfig. 7 and Table 5. The wider
range of error reduction has also led to more img@ment in weight minimization as a
result of consequent sizing; i.e. 14% improvememnf2596.4kg to 2272.8kg in this case.

Table 6: Spectral matching and frame sizing redait§ storey-2 bay example on soil type Il

Scaling Spectral Matching Fitness Sizing A .
M ethod Error (%) Improvement (%)  Method Minimized Weight (kg)
M a””ii'é Pract 44.6 - MPSO 2596.4
PSO 19.3 64.7 - -
MPSO 175 81.2 MPSO 2272.8
6 ;
Target
e Manual
5t A PSO |
‘f Y MPSO

- -
o~
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w

{
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Figure 6. Comparison of various mean-scaled spetitahed for the period interval of 6
storey-2 bay frame example with the target desmgresum (5% damped - soil type IlI)

5.2 The 13-storey 2-bay example

Another issue to investigate is the effect of suied height and period on spectral matching
and consequent sizing results. For this purposé3story frame is considered in this
example with the fundamental period10248<. The corresponding period interval for
spectral matching will thus be.250 ~1.872 which is much wider tha®.060 ~ 0.445 in
the previous frame. As a result, less spectral adibiity is achieved than previous
example especially in the case of soft soil (tyibe It can be concluded by comparison of
Fig. 8 with Fig. 9. Numerical errors reported inbles 7 and 8 provide further support for
such a conclusion.
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Figure 7. Convergence of MPSO compared with PS&péttral matching of 6 storey-2 bay
frame on soil type-llI
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Figure 8. Comparison of various mean-scaled spetatahed for the period interval of 13
storey-2bay frame example with the target desigtspm (soil type 1)
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Figure 9. Comparison of various mean-scaled spetatahed for the period interval of
13storey-2bay frame example with the target desjgattrum (soil type-lil)

Table 7: Spectral matching and frame sizing redaltd 3storey-2bay example on soil type |

. Spectral Matching Fitness Sizin Minimized Weight
Scaling Method Error (%) Improvement (%) M eth(?d (kg)
M anual 48.2 - MPSO 11217.8
PSO 33.9 41.4 - -
MPSO 30.6 56.9 MPSO 11018.6

Table 8: Spectral matching and frame sizing redaitd 3storey-2bay example on soil type I

. Spectral Matching Fitness Sizin Minimized Weight
Scaling Method Error (%) Improvement (%) M ethc?d (kg)
M anual 62.3 - MPSO 12095.3
PSO 44.6 27.3 - -
MPSO 42.1 34.9 MPSO 11829.6

For example, relative error of manual scaling hasvth from 27% to 48% for soil type |
and from 45% to 62% for soil type Ill, respectivelyHowever, in this example the
difference between sizing results based on maneghed with respect to MPSO are less
than the previous lower-rise frame. Reasoning camo fold: first; higher cardinality of
search space in taller buildings requires moree§isnevaluations to capture the optimal
sizing design by a meta-heuristic algorithm, se¢camgportance and contribution of the
gravitational loading with respect to lateral/dynamoads in combined member stresses and
structural responses gets higher for taller bugdinThe most spectral matching errors
among the treated cases belonged to the 13stoesypia with the target design spectrum
of soil type 1lI; i.e. 62%, 45% and 42% for the mah PSO and MPSO scaling results,
respectively.

Nevertheless, superiority of MPSO over PSO in teated examples stayed reliable as
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evident from fitness improvements in Tables 5 tmB8such a variety of frames and soil
types. The reason should be searched in propeoratipn and exploitation as crucial
features in meta-heuristic algorithms. Populatimeiity trace in Fig. 10 shows that MPSO
takes benefit of more DI during the search thanstaadard PSO in both the examples. The
feature helps it in exploring more regions of tlearsh space to access higher quality
solutions in early iterations. In another view, #ieterm in Eq.8 is an additional direction
pseudo-randomly scaled to construct vector-sum mews during iterations of the particle
swarm optimization.
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Figure 10. Diversity trace of MPSO vs. PSO in spcehatching of (a) 6 storey-2 bay and (b)
13 storey-2bay frame example

6. CONCLUSION

The present work formulated a twofold optimizatiéer ground motion scaling and
consequent sizing design of shear building frarB@sce the scale factors form continuous
design variables for spectral matching, the partisivarm optimization is efficiently
modified and suited for this problem.

Treating examples of low-rise and medium-rise boddframes, considerable ratio of
such spectral-compatibility-error decrease betwibenoptimal and equal scale factors was
declared. The results confirmed necessity and besfefpectral matching optimization.

It was also found that the compatibility error epéndent to the selected target spectrum
and the employed period interval. The optimal arahual scaling errors were greater for
the taller frame; as it has greater natural peléading to wider period interval for spectral
matching with respect to the low-rise building exde However, the optimal results were
less sensitive than those revealed by the manaatipe which applies equal scale factors to
different earthquake records.

The effect of target spectrum shape on spectralpatibility error was another issue
investigated in this study. The error values gdhenaere lower for stiffer soil with
narrower band of frequency in its flattened peajame due to the seismic design code. The
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matter was observed for both the frame exampleseter, the effect of structural height
and period interval is more crucial.

A number of modifications to the standard PSO huazessfully improved its efficiency
and effectiveness during the search. As in theddeaxamples, the proposed MPSO stood
superior in global optimization with respect to gtandard PSO. Tracing DI showed MSPO
capability in maintaining higher diversity of theasch agents during its progress and
provided further reasoning for such a performannoBaacement. In this regard, rapid
capture of the near optimal solution by MSPO isbof practical interest.

Furthermore, comparisons were made to study ecaabnwnpact of the proposed
optimal ground motion scaling on structural weighinimization. The examples were
modeled as shear buildings and analyzed under caulgravitational loading and seismic
base excitation with the scaled set of accelerogra&igorous sizing optimization by such
step-by-step numerical time-history analyses rege#hat using optimal scale factors could
marginally reduce the structural weight as a cosasare. However, percentage of such a
structural weight minimization is not directly papional to that of the optimal spectral
matching errors.

In view of the current research, optimizing thelsciactors by the proposed swarm
intelligent algorithm is recommended to insure yati scaling and proper spectral matching
with the target design spectrum and take econon@dtrm consequent sizing design of
building frames.
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