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ABSTRACT 
 

Dynamic structural responses via time history analysis are highly dependent to 
characteristics of selected records as the seismic excitation. Ground motion scaling is a 
well-known solution to reduce such a dependency and increase reliability to the dynamic 
results. The present work, formulate a twofold problem for optimal spectral matching and 
performing consequent sizing optimization based on such scaled ground motion via 
numerical step-by-step analyses. Particle swarm optimization as a widely used meta-
heuristic is specialized and improved to solve this problem treating a number of examples. 
The scaling error is evaluated using both traditional procedure and the developed method. In 
this regard, some issues are studied including the effect of structural period and shape of the 
design spectrum on the results. Contribution of the proposed enhancement on the standard 
particle swarm intelligence has improved its explorative capability resulting in higher 
efficiency of the algorithm. 
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1. INTRODUCTION 
 

Several code-specific or practical procedures in the seismic design or vulnerability 
assessment require earthquake time-history records for the step-by-step analysis procedures 
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[1-3]. It includes analysis of non-linear systems for which superposition is not reasonable 
[3-4]. The main challenge to use time-history input records is case-dependency of them and 
impossibility of earthquake prediction. Hence, a unique source of decision making based on 
time history analysis is not available because the structural responses varies as the input 
record is changed. On the other hand, well-known seismic codes have introduced a number 
of linear spectra as a legal input source of design.   

One solution for this problem is to make pure artificial records and filter them according 
to the site characteristics [4, 5] or to reconstruct the real record so that its spectrum fit the 
target standard [6, 7]. None of these approaches preserve frequency content and many other 
seismic characteristics of the recorded earthquake signal. According to the common practice 
in the seismic codes, a set of real records are scaled by their amplitudes in order to match a 
target standard spectrum [8-10]. As the smooth design spectrum is constructed on a 
statistical basis covering a variety of previous earthquakes, no single one may exactly match 
it. Common manual/code-practice accepts equal scaling coefficients for all the records in 
such a set which usually causes considerable compatibility error in the resulting scaled 
spectrum with respect to the target.  

Reduction of such an error is concerned here by optimizing the scaling factor for any 
selected set of earthquake accelerograms distinctly. These real-valued factors are measured 
with respect to each other, thus the cardinality of such a continuous design space is infinity. 
 The matter emphasizes necessity of using efficient algorithms to deal with such a 
continuous problem.  

In this regard, the present work offers an improved search algorithm in the category of 
swarm intelligence which mimics the behaviour of natural swarms such as bird flocks or ant 
colonies to achieve their desired goal [11-19]. The efficiency and effectiveness of the 
developed method is then evaluated in a number of examples showing its superiority over 
the common practice according to the seismic design code. Further sizing design is 
performed using the obtained sets of scale factors to evaluate economical contribution of 
optimal ground motion scaling on structural design of building frames. 
 
 

2. PROBLEM FORMULATION 
 
2.1 Spectral matching optimization 

Suppose a set of N horizontal earthquakes is given. At this stage, N single spectra are 
provided whose weighted average should not fall below the target spectrum according to the 
Iranian code of seismic design ICPSRDB 2800-05 [1]. The optimization problem of spectral 
matching is thus formulated as follows to tune the weighting factors, iα : 
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for which F denotes the fitness function and the matching error, Err, is computed as: 
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and β  imposes the mean spectrum, ( )avgSpa T , to fall equal or greater than the target within 

the specified period interval. It is calculated as: 
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2.2 Frame sizing optimization 

Once a set of scale factors for the employed earthquake records is determined either 
manually (equal factors) or via the spectral matching optimization, another issue is 
activated; that is to optimize the building frame sections under the scaled ground motion.  

In this regard, the dynamic results should be further combined with the static response of 
the structure under gravitational loading (e.g. dead and live loads). If N is less than 7 the 
maximum response out of N dynamic excitations is used; otherwise the mean dynamic 
response is considered according to the seismic design code ICPSRDB 2800-05.  

The new optimization problem is to minimize the structural weight for the assigned 
frame sections providing that all the addressing stress/displacement limitations of the design 
code are satisfied. In this study the allowable stress design requirements due to AISC-
ASD89 and ICPSRDB 2800-05 are employed. The following penalty function is used to 
evaluate equivalent fitness function. 

 

1( ,..., ) * (1 )m p lFitness f x x K C= − + ∑
 

(4) 

 
in which f stands for the objective function (weight), Cl denotes the lth constraint violation 
and Kp is the employed penalty coefficient. The section indices assigned to the m member 
groups are denoted by 1,..., mX x x=< >  as the structural design vector. 

Here-in-after any frame is modeled as a shear building with one horizontal degree of 
freedom at each storey level which is considered a rigid floor. In order to indirectly apply 
the geometric constraint, section indices in the design vector are sorted in descending order 
before fitness evaluation; that is to insure no column section in any lower storey is lighter 
than the upper storey column. 
 
 

3. SWARM INTELLIGENCE BASICS 
 

Complexity of many engineering problems has made the investigators to approach meta-
heuristic search; the algorithms usually inspired by artificial behaviour of natural 
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populations to seek their proper goals. Swarm intelligence is based on two main capabilities 
of the searching agents: self organization and stigmergy. The former enables any particle in 
the swarm to move; i.e. to alter a solution candidate during optimization based on its own 
experience. Stigmergy stands for the effect of environment on an agent which is addressed 
by gathering information from the solution candidates discovered by other search agents. 

One of the well-known algorithms in the swarm intelligence category is Particle Swarm 
Optimization, PSO, introduced by Eberhart and Kennedy [11, 12]. Any search agent in PSO 
is called a particle taking its location vector X a point or solution candidate in the search 
space. After completing the random initiation of the particles’ population with a 
predetermined size, any new solution at the next iteration k+1, is discovered by the particle i 
using the following relations: 
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in which ic , cc , sc  stand for inertial, cognitive and social factors and r  is a function giving 

random numbers between 0 and 1. Pbest
iX  denotes the best pervious position that a particle 

has already experienced while gbestX  is the global best position among the entire swarm. 

The former mimics the cognitive and the latter models social relations in a natural (bird’s) 
swarm to find the optimal position. 
Such a terminology can be used in the following optimization algorithm: 

1. Select PSO parameters: PopSize , NumIters , ic , cc , sc   

2. InitiatePopSize number of solution candidates and their velocity vectors, iV , 

randomly. 
3. Evaluate the particles fitness values 
4. Determine the best position experienced by each ith particle during its search as Pbest

iX   

5. Identify  gbestX as the fittest Pbest
jX  among all current swarm particles using: 

 
arg(max( ( )))Pbest

i
i

j Fitness X=
 (7) 

 
6. Reposition particles according to Eq.6 to form new population of particles 
7. Repeat the steps 3 to 6 for a predetermined NumIters  number of iterations. 
 

 
4. ENHANCED PARTICLE SWARM OPTIMIZER 

 
Performance of a meta-heuristic algorithm highly depends on proper balance between 
intensification and diversification. Intensification provides exploitation or local search 
capability while diversification is also needed to explore new parts of the search space. 

In this regard, a modified version of the algorithm, called MPSO, is offered here 
substituting the Eq.6 with the following relation: 
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In the above relation three modification strategies are employed to enhance the standard 

PSO: First, a random generator is added to the inertial term providing more exploration 
during the search.  As the second strategy, passive congregation [16] is employed by an 
additional movement towardk

RX ; denoting a randomly picked particle over the current 
swarm. The last improvement is multiplying the 4th term factor, Rc , by linearly degrading 

agent )1(
NumItr

k− . 

These modifications are designated to add more diversification in early stages of the 
search and more intensification as the search progress in order not to loose the near optimal 
solution found in the last iterations. Fig. 1 shows flowchart of the proposed MPSO while its 
performance is tested and compared with the standard PSO in the next section. 

 

 
Figure 1. Flowchart of the proposed optimization algorithm 

 
 

5. NUMERICAL EXAMPLES 
 

A 6-storey and a 13-storey steel frame, both with 2-bays are treated to illustrate the concepts 
of this study over low- and medium-rise buildings. Typical storey height and bay length are 
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3 and 5 meters, respectively. The floor masses are computed using the uniform dead load 
plus 20% of the live load. During optimization, every member group is assigned a structural 
profile among 31 European standard Sections as listed in Table 1. All the sections are 
constructed from steel grade St-37. For the sake of more computational efficiency during 
several dynamic analyses and to reduce the search space size, member grouping is fixed at 
every storey as depicted in Fig. 2. 
 

  
(a)                                                                 (b) 

Figure 2. Member grouping for (a) 6 storey-2 bay and (b) 13 storey-2 bay frames with rigid 
floors 
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Table 1: Section list for sizing optimization 

Section 
Index 

Section 
Name 

Section 
Index 

Section 
Name 

Section 
Index 

Section 
Name 

1 IPE120 12 IPE400 23 TUBO220X220X20 
2 IPE140 13 IPE450 24 TUBO240X240X20 
3 IPE160 14 IPE500 25 TUBO260X260X20 
4 IPE180 15 IPE550 26 TUBO280X280X20 
5 IPE200 16 IPE600 27 TUBO300X300X20 
6 IPE220 17 TUBO100X100X10 28 TUBO320X320X20 
7 IPE240 18 TUBO120X120X20 29 TUBO340X340X20 
8 IPE270 19 TUBO140X140X20 30 TUBO380X380X20 
9 IPE300 20 TUBO160X160X20 31 TUBO400X400X25 
10 IPE330 21 TUBO180X180X20   
11 IPE360 22 TUBO200X200X20   

 
Stress and drift constraints are evaluated under combined static gravitational and 

dynamic seismic loading. The allowable storey drift are determined regarding Iranian 
Standard 2800 whereas the building frame is assumed to have a behavior factor of 5R =  and 
be located at the very high seismic zone. Combined bending and axial stress ratios are 
evaluated using the AISC-ASD89 procedure [20].  

Gravitational loading includes dead load of 25 
kgf

cm
 and live load of 5

kgf

cm
 uniformly 

exerted on the floor beams. Meanwhile, the dynamic loading is implemented as the base 
excitation using a set of 7 accelerograms as given in Table 2 taken from PEER strong 
ground motion database [21]. Variety of resulted spectra can be observed in Fig. 3. They are 
generated for 5% damping ratio as offered in the design code [1]. Each accelerogram is 
scaled before being used in the dynamic analysis using either method: manual practice, 
optimized with PSO or with MPSO. In the manual/code practice all iy  factors are taken 
unity then scaled by β  to construct equal scale factors so that the resulting mean spectra do 

not fall below the target within the period range: 0.2 ~ 1.5Structure StructureT T . Such a period 

interval is due to ICPSRDB 2800-05 dependent to the StructureT  estimated based on the 
frame’s total height (in meters), H, using the following design code relation [1]: 

 
0.750.08StructureT H=  (9) 

 
Table 2: The set of earthquake components for spectral matching 

Record 1 2 3 4 5 6 7 

Location 
Cape 

Mendocino 
Landers Northridge Northridge 

Cape 
Mendocino 

Tabas Tabas 

Date 1992-4-25 1992-6-28 1994-1-17 1994-1-17 1992-4-25 1978-9-16 1978-9-16 
Station Petrolia Yermo NewHall Tarzana Rio Dayhook Tabas 
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Figure 3. Normalized spectra of the employed earthquakes for 5% damping 

 
In the spectral matching optimization, the iy  factors are derived using a presented swarm 

intelligent algorithm and then multiplied by proper β  to generate the resulting set of scale 
factors.  

Before scaling, each accelerogram is normalized to its peak ground acceleration, PGA. 
Thus the seismic hazard effect due to the design base earthquake and seismicity of the site 
zone should be taken into consideration prior to dynamic analysis. In addition, nonlinear 
effects are indirectly estimated by the structural behavior factor R  according to the 
allowable stress design procedure of ICPSRDB 2800-05. Hence, the normalized 
accelerograms not only are scaled by the factors resulted from spectral matching but also are 
further multiplied by .PGA I

Rγ =  to be used in the linear step-by-step analysis. Here, the 

building importance factor I  is taken 1 while 0.35PGA g=  for very high seismic zone due 
to ICPSRDB 2800-05.  

Table 3 gives the control parameters used for PSO and MPSO during spectral matching 

and sizing optimization. Notify thatRc is only used in MPSO. A Diversity Index, DI, is also 

defined as the coefficient of variation among the population of design vectors. The 
randomly initiated population is identically employed for both algorithms in every 
comparison. A penalty coefficient of 100PK =  is used for the sizing design to insure 
satisfaction of structural constraints. 
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Table 3: The employed control parameters for optimization  

Problem Algorithm PopSize  NumIters  ic  cc  sc  
Rc  

Spectral 
Matching 

PSO 10 150 1 1 1 - 

MPSO 10 150 1 1 1 4 

Frame 
Sizing 

PSO 20 100 1 1 1 - 
MPSO 20 100 1 1 1 4 

 
5.1 The 6-storey 2-bay example 

For the first test, the normalized spectrum of ICPSRDB 2800-05 using soil type I is 
considered as the target for spectral matching within the period interval: 0.060 ~ 0.445s. 

The natural period of this structure is 0.699sbased on Eq. 9. Results of the three scaling 
methods are compared against the target in Fig. 4 whereas the period interval is identified by 
the dashed lines. As declared in this figure, the results are considerably closer to the design 
spectrum for optimized cases than manual; however, all of them satisfy to be over the target 
spectrum in the suited period interval. It can also be realized that the MPSO method has 
resulted in the most compatible spectrum with the target among the three methods. Fig. 5 
better shows superiority of the MPSO over PSO in achieving higher fitness during spectral 
matching optimization. Table 4 declares that the three employed scaling methods have 
resulted in three scale factor sets different from each other. According to Table 5, the 
manual practice has resulted in about 27% spectral compatibility error while it is reduced to 
19% and 15% for PSO and MPSO, respectively. Such a variation in the scaling factors and 
the resulting errors, confirms importance of optimization in this problem. 
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Figure 4. Comparison of various mean scaled spectra matched for the period interval of 6 

storey-2 bay frame example with the target design spectrum (5% damped - soil type I)  
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Figure 5. Convergence of MPSO compared with PSO in spectral matching of 6 storey-2 bay 

frame on soil type I 
 

Table 4: Resulted scale factors for 6 storey-2 bay example on soil type I 
Scaling 
Method 1α  2α  3α  4α  5α  6α  7α  β  γ  

Manual 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.411 0.070g 
PSO 2.000 0.500 0.500 2.000 2.000 0.500 0.500 1.226 0.070g 

MPSO 0.500 0.500 0.500 1.794 2.000 0.500 0.500 1.510 0.070g 

 
Table 5: Spectral matching and frame sizing results for 6 storey-2 bay example on soil type I 

Scaling 
Method 

Spectral Matching 
Error (%) 

Fitness Improvement 
(%) 

Sizing 
Method 

Minimized 
Weight (kg) 

Manual 26.9 - MPSO 2459.3 
PSO 19.0 18.7 - - 

MPSO 15.4 46.6 MPSO 2291.2 

 
In algorithmic point of view, the fitness improvement with respect to the initial 

population has been 46.6% for MPSO which is considerably greater than 18.7% for PSO. 
Consequently, using the optimal scale factors given by MPSO has resulted in better sizing 
optimization with respect to applying the manual scale factors. That is 7% improvement in 
the minimized columns weight from 2459.3kg to 2291.2kg. 

In order to investigate the effect of target spectrum shape on the spectral matching 
results, the test is repeated with ICPSRDB 2800-05 design spectrum of soil type III for such 
a very high seismicity region.  According to Fig. 6, more difference between manual scaling 
results and those of optimized scaling by PSO/MSPO is evident with respect to the case of 
stiff soil (type I) in Fig. 4. In another word, achieving spectral compatibility with such a 
wider target spectrum is less than the case of soil type I, resulting in more matching errors as 
given in Table 6. The error has growth form nearly 27% to 45% for manual scaling between 
the previous and current case. Similar results are observed for optimized scaling errors of 
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PSO and MPSO, however, less critical than the manual method. Besides, MPSO has 
obtained more fitness improvement than PSO considering Fig. 7 and Table 5. The wider 
range of error reduction has also led to more improvement in weight minimization as a 
result of consequent sizing; i.e. 14% improvement from 2596.4kg to 2272.8kg in this case. 

 
Table 6: Spectral matching and frame sizing results for 6 storey-2 bay example on soil type III 

Scaling 
Method 

Spectral Matching 
Error (%) 

Fitness 
Improvement (%) 

Sizing 
Method 

Minimized Weight (kg) 

Manual/Pract
ice 

44.6 - MPSO 2596.4 

PSO 19.3 64.7 - - 
MPSO 17.5 81.2 MPSO 2272.8 
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Figure 6. Comparison of various mean-scaled spectra matched for the period interval of 6 
storey-2 bay frame example with the target design spectrum (5% damped - soil type III) 

 
5.2 The 13-storey 2-bay example 

Another issue to investigate is the effect of structural height and period on spectral matching 
and consequent sizing results. For this purpose, a 13story frame is considered in this 
example with the fundamental period of1.248s. The corresponding period interval for 
spectral matching will thus be 0.250 ~ 1.872s which is much wider than 0.060 ~ 0.445s in 
the previous frame. As a result, less spectral compatibility is achieved than previous 
example especially in the case of soft soil (type III). It can be concluded by comparison of 
Fig. 8 with Fig. 9. Numerical errors reported in Tables 7 and 8 provide further support for 
such a conclusion. 
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Figure 7. Convergence of MPSO compared with PSO in spectral matching of 6 storey-2 bay 

frame on soil type-III 
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Figure 8. Comparison of various mean-scaled spectra matched for the period interval of 13 

storey-2bay frame example with the target design spectrum (soil type I) 
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Figure 9. Comparison of various mean-scaled spectra matched for the period interval of 

13storey-2bay frame example with the target design spectrum (soil type-III) 
 

Table 7: Spectral matching and frame sizing results for 13storey-2bay example on soil type I 

Scaling Method 
Spectral Matching 

Error (%) 
Fitness 

Improvement (%) 
Sizing 

Method 
Minimized Weight 

(kg) 
Manual 48.2 - MPSO 11217.8 

PSO 33.9 41.4 - - 
MPSO 30.6 56.9 MPSO 11018.6 

 
Table 8: Spectral matching and frame sizing results for 13storey-2bay example on soil type III 

Scaling Method 
Spectral Matching 

Error (%) 
Fitness 

Improvement (%) 
Sizing 

Method 
Minimized Weight 

(kg) 
Manual 62.3 - MPSO 12095.3 

PSO 44.6 27.3 - - 
MPSO 42.1 34.9 MPSO 11829.6 

 
For example, relative error of manual scaling has growth from 27% to 48% for soil type I 

and from 45% to 62% for soil type III, respectively.  However, in this example the 
difference between sizing results based on manual method with respect to MPSO are less 
than the previous lower-rise frame. Reasoning can be two fold: first; higher cardinality of 
search space in taller buildings requires more fitness evaluations to capture the optimal 
sizing design by a meta-heuristic algorithm, second; importance and contribution of the 
gravitational loading with respect to lateral/dynamic loads in combined member stresses and 
structural responses gets higher for taller buildings. The most spectral matching errors 
among the treated cases belonged to the 13storey example with the target design spectrum 
of soil type III; i.e. 62%, 45% and 42% for the manual, PSO and MPSO scaling results, 
respectively.  

Nevertheless, superiority of MPSO over PSO in the treated examples stayed reliable as 
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evident from fitness improvements in Tables 5 to 8 for such a variety of frames and soil 
types. The reason should be searched in proper exploration and exploitation as crucial 
features in meta-heuristic algorithms. Population diversity trace in Fig. 10 shows that MPSO 
takes benefit of more DI during the search than the standard PSO in both the examples. The 
feature helps it in exploring more regions of the search space to access higher quality 
solutions in early iterations. In another view, the 4th term in Eq.8 is an additional direction 
pseudo-randomly scaled to construct vector-sum movements during iterations of the particle 
swarm optimization. 
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(a)                                                                              (b) 

Figure 10. Diversity trace of MPSO vs. PSO in spectral matching of (a) 6 storey-2 bay and (b) 
13 storey-2bay frame example  

 
 

6. CONCLUSION 
 

The present work formulated a twofold optimization for ground motion scaling and 
consequent sizing design of shear building frames. Since the scale factors form continuous 
design variables for spectral matching, the particle swarm optimization is efficiently 
modified and suited for this problem.  

Treating examples of low-rise and medium-rise building frames, considerable ratio of 
such spectral-compatibility-error decrease between the optimal and equal scale factors was 
declared. The results confirmed necessity and benefit of spectral matching optimization.  

It was also found that the compatibility error is dependent to the selected target spectrum 
and the employed period interval. The optimal and manual scaling errors were greater for 
the taller frame; as it has greater natural period leading to wider period interval for spectral 
matching with respect to the low-rise building example. However, the optimal results were 
less sensitive than those revealed by the manual practice which applies equal scale factors to 
different earthquake records. 

The effect of target spectrum shape on spectral compatibility error was another issue 
investigated in this study. The error values generally were lower for stiffer soil with 
narrower band of frequency in its flattened peak region due to the seismic design code. The 
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matter was observed for both the frame examples; however, the effect of structural height 
and period interval is more crucial.  

A number of modifications to the standard PSO have successfully improved its efficiency 
and effectiveness during the search. As in the treated examples, the proposed MPSO stood 
superior in global optimization with respect to the standard PSO. Tracing DI showed MSPO 
capability in maintaining higher diversity of the search agents during its progress and 
provided further reasoning for such a performance enhancement. In this regard, rapid 
capture of the near optimal solution by MSPO is found of practical interest. 

Furthermore, comparisons were made to study economical impact of the proposed 
optimal ground motion scaling on structural weight minimization. The examples were 
modeled as shear buildings and analyzed under combined gravitational loading and seismic 
base excitation with the scaled set of accelerograms. Rigorous sizing optimization by such 
step-by-step numerical time-history analyses revealed that using optimal scale factors could 
marginally reduce the structural weight as a cost measure. However, percentage of such a 
structural weight minimization is not directly proportional to that of the optimal spectral 
matching errors. 

In view of the current research, optimizing the scale factors by the proposed swarm 
intelligent algorithm is recommended to insure optimal scaling and proper spectral matching 
with the target design spectrum and take economic merit in consequent sizing design of 
building frames.  
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