

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING
Int. J. Optim. Civil Eng., 2014; 4(3):321-339

COMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION
AND ITS ENHANCED VERSION

A. Kaveh*,† and M. Ilchi Ghazaan
Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of

Science and Technology, Narmak, Tehran, P.O. Box 16846-13114, Iran

ABSTRACT

Colliding bodies optimization (CBO) is a new population-based stochastic optimization
algorithm based on the governing laws of one dimensional collision between two bodies
from the physics. Each agent is modeled as a body with a specified mass and velocity. A
collision occurs between pairs of objects to find the global or near-global solutions.
Enhanced colliding bodies optimization (ECBO) uses memory to save some best solutions
and utilizes a mechanism to escape from local optima. The performances of the CBO and
ECBO are shown through truss and frame design optimization problems. The codes of these
methods are presented in MATLAB and C++.

Received: 10 May 2014; Accepted: 15 September 2014

KEY WORDS: colliding bodies optimization; enhanced colliding bodies optimization;
structural optimization; MATLAB; C++

1. INTRODUCTION

Meta-heuristics are the recent generation of the optimization methods that are proposed to
solve complex problems. The basic idea behind these stochastic search techniques is usually
to simulate the natural phenomena. Genetic algorithm (GA) is inspired by Darwin’s theory
about biological evolutions [1] and [2]. Particle swarm optimization (PSO) simulates the
social interaction behavior of birds flocking and fish schooling [3] and [4]. Ant colony
optimization (ACO) imitates the way that ant colonies find the shortest route between the

*Corresponding author: Department of Civil Engineering, Iran University of Science and Technology,
Narmak, Tehran, Iran
†E-mail address: alikaveh@iust.ac.ir (A. Kaveh)

A. Kaveh and M. Ilchi Ghazaan

322

food and their nest [5]. Harmony search (HS) algorithm was conceptualized using the
musical process of searching for a perfect state of harmony [6]. Charged system search
(CSS) uses the electric laws of physics and the Newtonian laws of mechanics to guide the
Charged Particles [7].

As a newly developed type of meta-heuristic algorithm, colliding bodies optimization
(CBO) is introduced and applied to structural problems by Kaveh and Mahdavi [8-10]. The
CBO is multi-agent algorithm inspired by a collision between two objects in one-dimension.
Each agent is modeled as a body with a specified mass and velocity. A collision occurs
between pairs of objects and the new positions of the colliding bodies are updated based on
the collision laws. The enhanced colliding bodies optimization (ECBO) is introduced by the
authors [11] and it uses memory to save some historically best solution to improve the CBO
performance without increasing the computational cost. In this method, some components of
agents are also changed to jump out from local minimum.

The remainder of this paper is organized as follows: The CBO and ECBO algorithms are
briefly presented in Section 2. In order to show the performance of these techniques on
structural optimization, section 3 includes truss and frame examples. The last section
concludes the paper.

Computer codes in Matlab and C++ are provided in the Appendix 1 and Appendix 2,
respectively.

2. OPTIMIZATION ALGORITHMS

2.1 Colliding bodies optimization (CBO)

Colliding bodies optimization (CBO) is a new meta-heuristic search algorithm that is
developed by Kaveh and Mahdavi [8]. In this technique, one object collides with other
object and they move towards a minimum energy level. The CBO is simple in concept and
does not depend on any internal parameter. Each colliding body (CB), Xi, has a specified
mass defined as:

nk

ifit

kfit
m

n

i

k ,...,2,1,

)(

1
1

)(

1

1



 

(1)

where fit(i) represents the objective function value of the ith CB and n is the number of
colliding bodies.

In order to select pairs of objects for collision, CBs are sorted according to their mass in a
decreasing order and they are divided into two equal groups: (i) stationary group, (ii)
moving group (Fig. 1). Moving objects collide to stationary objects to improve their
positions and push stationary objects towards better positions. The velocities of the
stationary and moving bodies before collision (vi) are calculated by

COMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION AND ITS ...

323

2
,...,2,1,0

n
ivi  (2)

n
nn

ixxv in
i

i ,...,2
2

,1
2

,
2




 (3)

Figure 1. The pairs of CBs for collision [13]

The velocity of stationary and moving CBs after the collision (v'i) are evaluated by

2
,...,2,1

)(

2

222' n
i

mm

vmm

v
n

i
i

n
i

n
i

n
i

i 










 (4)

n
nn

i
mm

vmm

v
n

i
i

in
i

i

i ,...,2
2

,1
2

)(

2

2' 










 (5)

max

1
iter

iter
 (6)

where iter and itermax are the current iteration number and the total number of iteration for
optimization process, respectively. ε is the coefficient of restitution (COR).

New positions of each group are updated by

2
,...,2,1,'

n
ivrandxx ii

new
i   (7)

n
nn

ivrandxx in
i

new
i ,...,2

2
,1

2
,'

2




 (8)

where xi

new, xi and v'i are the new position, previous position and the velocity after the
collision of the ith CB, respectively. rand is a random vector uniformly distributed in the
range of [1,1] and the sign ‘‘°’’ denotes an element-by-element multiplication.

The flowchart of CBO algorithm is depicted in Fig. 2. MATLAB and C++ codes for
CBO are presented in Appendices 1 and 2.

A. Kaveh and M. Ilchi Ghazaan

324

Figure 2. Flowchart of the CBO algorithm

2.2 Enhanced colliding bodies optimization (ECBO)

In order to improve CBO to get faster and more reliable solutions, Enhanced Colliding
Bodies Optimization (ECBO) was developed which uses memory to save a number of
historically best CBs and also utilizes a mechanism to escape from local optima [11]. The
flowchart of ECBO is shown in Fig. 3 and its codes in MATLAB and C++ are presented in
Appendix 1 and 2. The steps of this technique are given as follows:

Level 1: Initialization
Step 1: The initial positions of all CBs are determined randomly in an m-dimensional

search space.

nixxrandomxxi ,...,2,1),(minmaxmin
0   (9)

COMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION AND ITS ...

325

Figure 3. Flowchart of the ECBO algorithm [11]

where xi

0 is the initial solution vector of the ith CB. Here, xmin and xmax are the bounds of
design variables; random is a random vector which each component is in the interval [0, 1].

Level 2: Search
Step 1: The value of mass for each CB is evaluated according to Eq. (1).
Step 2: Colliding memory (CM) is utilized to save a number of historically best CB

vectors and their related mass and objective function values. Solution vectors which are
saved in CM are added to the population and the same number of current worst CBs are
deleted. Finally, CBs are sorted according to their masses in a decreasing order.

Step 3: CBs are divided into two equal groups: (i) stationary group, (ii) moving group
(Fig. 1).

Step 4: The velocities of stationary and moving bodies before collision are evaluated by
Eqs. (2) and (3), respectively.

A. Kaveh and M. Ilchi Ghazaan

326

Step 5: The velocities of stationary and moving bodies after the collision are evaluated
using Eqs. (4) and (5), respectively.

Step 6: The new position of each CB is calculated by Eqs. (7) and (8).
Step 7: A parameter like Pro within (0, 1) is introduced and it is specified whether a

component of each CB must be changed or not. For each colliding body Pro is compared with
rni (i=1,2,…,n) which is a random number uniformly distributed within (0, 1). If rni < pro, one
dimension of the ith CB is selected randomly and its value is regenerated as follows:

).(min,max,min, jjjij xxrandomxx  (10)

where xij is the jth variable of the ith CB. xj,min and xj,max respectively, are the lower and
upper bounds of the jth variable. In order to protect the structures of CBs, only one
dimension is changed.

Level 3: Terminal condition check
Step 1: After the predefined maximum evaluation number, the optimization process is

terminated.

3. NUMERICAL EXAMPLES

In this paper, the goal is to find optimum values for member cross-sectional areas that
minimize the structural weight while satisfying some constraints. The minimum weight
design problem can be formulated as:

],..,,[}{Find 21 ngxxxX 





nm

i
iii LxXW

1

})({ minimize to 








maximin i

,...,2,1,0})({
 : tosubjected

i

j

xxx

njXg

(11)

where {X} is the vector containing the design variables; ng is the number of design
variables; W({X}) presents weight of the structure; nm is the number of elements of the
structure; ρi and Li denotes the material density and the length of the ith member,
respectively. ximin and ximax are the lower and upper bounds of the design variable xi,
respectively. gj({X}) denotes design constraints; and n is the number of the constraints. The
constraints are handled using the well-known penalty approach.

The performances of the standard CBO and ECBO are evaluated through two standard
design optimization problems. The investigated instances consist of the 200-bar planar truss [12]
and the 3-bay 15-story frame [13]. The population of 20 and 40 CBs are utilized for truss and
frame problems, respectively. The predefined maximum evaluation number is considered as

COMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION AND ITS ...

327

20,000 analyses for two examples. To reduce statistical errors, each test is repeated 20 times.
3.1 A 200-bar planar truss

The 200-bar plane truss is shown in Fig. 4. The elastic modulus is 210 GPa and the material
density is 7,860 kg/m3 for all elements. Non-structural masses of 100 kg are attached to the
nodes 1 to 5. The minimum admissible cross-sectional areas are 0.1 cm2. Because of the
symmetry, the bars are categorized into 29 groups. The first three natural frequencies of the
structure are assumed as the constraints (f1 ≥ 5 Hz, f2 ≥ 10 Hz, f3 ≥ 15 Hz).

Table 1 illustrates the best solution vectors, the corresponding weights and mean weights of
the CSS-BBBC [14], standard CBO and ECBO [12]. Table 2 represents the natural frequencies
of the optimized structures. None of the frequency constraints are violated. The ECBO
algorithm finds the best design among the other methods, which is 2158.08 kg. The best
weights for CSS-BBBC and standard CBO are 2298.61 kg and 2161.15 kg, respectively.

Figure 4. Schematic of the 200-bar planar truss [12]

A. Kaveh and M. Ilchi Ghazaan

328

Table 1: Optimal design obtained for the 200-bar planar truss

Element group Members in the group
Areas (cm2)

Kaveh and Zolghadr [14]
Present work

CBO ECBO
1 1,2,3,4 0.2934 0.3059 0.2993
2 5,8,11,14,17 0.5561 0.4476 0.4497
3 19,20,21,22,23,24 0.2952 0.1000 0.1000
4 18,25,56,63,94,101,132,139,170,177 0.1970 0.1001 0.1
5 26,29,32,35,38 0.8340 0.4944 0.5137

6
6,7,9,10,12,13,15,16,27,28,30,31,33,

34,36,37
0.6455 0.8369 0.7914

7 39,40,41,42 0.1770 0.1001 0.1013
8 43,46,49,52,55 1.4796 1.5514 1.4129
9 57,58,59,60,61,62 0.4497 0.1000 0.1019
10 64,67,70,73,76 1.4556 1.5286 1.6460

11
44,45,47,48,50,51,53,54,65,66,68,69,

71,72,74,75
1.2238 1.1547 1.1532

12 77,78,79,80 0.2739 0.1000 0.1000
13 81,84,87,90,93 1.9174 2.9980 3.1850
14 95,96,97,98,99,100 0.1170 0.1017 0.1034
15 102,105,108,111,114 3.5535 3.2475 3.3126

16
82,83,85,86,88,89,91,92,103,104,106,

107,109,110,112,113
1.3360 1.5213 1.5920

17 115,116,117,118 0.6289 0.3996 0.2238
18 119,122,125,128,131 4.8335 4.7557 5.1227
19 133,134,135,136,137,138 0.6062 0.1002 0.1050
20 140,143,146,149,152 5.4393 5.1359 5.3707

21
120,121,123,124,126,127,129,130,141,

142,144,145,147,148,150,151
1.8435 2.1181 2.0645

22 153,154,155,156 0.8955 0.9200 0.5443
23 157,160,163,166,169 8.1759 7.3084 7.6497
24 171,172,173,174,175,176 0.3209 0.1185 0.1000
25 178,181,184,187,190 10.98 7.6901 7.6754

26
158,159,161,162,164,165,167,168,179,

180,182,183,185,186,188,189
2.9489 3.0895 2.7178

27 191,192,193,194 10.5243 10.6462 10.8141
28 195,197,198,200 20.4271 20.7190 21.6349
29 196,199 19.0983 11.7463 10.3520

Weight (kg) 2298.61 2161.15 2158.08
Mean weight (kg) N/A 2447.52 2159.93

Table 2: Optimal design of the natural frequencies (Hz)

Frequency number
Natural frequencies (Hz)

Kaveh and Zolghadr [14]
Present work

CBO ECBO
1 5.010 5.000 5.000
2 12.911 12.221 12.189
3 15.416 15.088 15.048
4 17.033 16.759 16.643
5 21.426 21.419 21.342

COMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION AND ITS ...

329

6 21.613 21.501 21.382

Fig. 5 depicts the best and average convergence history for the results of the standard
CBO and ECBO. The standard CBO algorithm needs about 10,500 analyses to find the best
solution while this number is about 14,700 analyses for the ECBO algorithm. It should be
noted that the design found by ECBO at 10,500th analysis is lighter than that found by
standard CBO at the same analysis.

Figure 5. The convergence curve for the 200-bar planar truss [12]

3.2 A 3-bay 15-story frame

The configuration, applied loads and the numbering of member groups for this problem is
shown in Fig. 6. The modulus of elasticity is 29,000 ksi (200 GPa) and the yield stress is 36
ksi (248.2 MPa) for all members. The effective length factors of the members are calculated
as kx≥0 for a sway-permitted frame and the out-of-plane effective length factor is specified
as ky=1.0. Each column is considered as non-braced along its length, and the non-braced
length for each beam member is specified as one-fifth of the span length. The frame is
designed following the LRFD specification and uses an inter-story drift displacement
constraint [15]. Also, the sway of the top story is limited to 9.25 in (23.5 cm).

Table 3 shows the best solution vectors, the corresponding weights and the average
weights for present algorithms and some other meta-heuristic algorithms [13]. ECBO has
obtained the lightest design compared to other methods. The best weight of the ECBO
algorithm is 86,986 lb while it is 95,850 lb for the HPSACO [16], 97,689 lb for the HBB-
BC [17], 93,846 lb for the ICA [18], 92,723 lb for CSS [19] and 93,795 lb for the CBO. The
CBO and ECBO algorithms get the optimal solution after 9,520 and 9,000 analyses,
respectively. Convergence history of the present algorithms for the best and average
optimum designs is depicted in Fig. 7. It can be seen that the convergence rate of the ECBO
algorithm is higher than the CBO.

A. Kaveh and M. Ilchi Ghazaan

330

Figure 6. Schematic of the 3-bay 15-story frame [13]

COMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION AND ITS ...

331

Figure 7. The convergence curve for the 3-bay 15-story frame [13]

Table 3: Optimal design obtained for the 3-bay 15-story frame

Element group
Optimal W-shaped sections

HPSACO
[16]

HBB-BC
[17]

ICA
[18]

CSS
[19]

Present work
CBO ECBO

1 W21×111 W24×117 W24×117 W21×147 W24×104 W14×99
2 W18×158 W21×132 W21×147 W18×143 W40×167 W27×161
3 W10×88 W12×95 W27×84 W12×87 W27×84 W27×84
4 W30×116 W18×119 W27×114 W30×108 W27×114 W24×104
5 W21×83 W21×93 W14×74 W18×76 W21×68 W14×61
6 W24×103 W18×97 W18×86 W24×103 W30×90 W30×90
7 W21×55 W18×76 W12×96 W21×68 W8×48 W14×48
8 W27×114 W18×65 W24×68 W14×61 W21×68 W14×61
9 W10×33 W18×60 W10×39 W18×35 W14×34 W14×30

10 W18×46 W10×39 W12×40 W10×33 W8×35 W12×40
11 W21×44 W21×48 W21×44 W21×44 W21×50 W21×44

Weight (lb) 95,850 97,689 93,846 92,723 93,795 86,986
Mean weight (lb) N/A N/A N/A N/A 98,738 88,410

4. CONCLUSION

In the CBO, each solution vector is considered as a colliding body and the governing laws of
collision from the physics is the base of this technique, where these laws determine the
movement process of the CBs. The CBO has a simple formulation, and it requires no
internal parameter tuning. Enhanced colliding bodies optimization (ECBO) uses memory to
save a number of historically best CBs and also utilizes the random perturbation mechanism
to update the positions. The introduction of memory can increase the convergence speed of
ECBO with respect to CBO. Furthermore, changing some components of colliding bodies
will help ECBO to escape from local minima.

A. Kaveh and M. Ilchi Ghazaan

332

REFERENCES

1. Holland JH. Adaptation in natural and artificial systems, Ann Arbor, University of

Michigan Press 1975.
2. Goldberg DE. Genetic algorithms in search optimization and machine learning, Boston,

Addison-Wesley 1989.
3. Eberhart RC, Kennedy J. A new optimizer using particle swarm theory, In Proc. 6th Int.

Symp. Micromachine Hum. Sci, 1995, pp. 39-43.
4. Kennedy J, Eberhart RC. Particle swarm optimization, In Proc. IEEE Int. Conf. Neural

Netw, 1995, pp. 1942-8.
5. Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by a colony of

cooperating agents, IEEE Trans Syst Man Cybern 1996; B26(1): 29-41.
6. Geem ZW, Kim J-H, Loganathan GV. A new heuristic optimization algorithm: harmony

search, Simulation 2001; 76(2): 60–8.
7. Kaveh A, Talatahari S. A novel heuristic optimization method: charged system search,

Acta Mech 2010; 213: 267-86.
8. Kaveh A, Mahdavai VR. Colliding bodies optimization: A novel meta-heuristic method,

Comput Struct 2014; 139: 18-27.
9. Kaveh A, Mahdavai VR. Colliding Bodies Optimization method for optimum design of

truss structures with continuous variables, Adv Eng Softw 2014; 70: 1-12.
10. Kaveh A, Mahdavai VR. Colliding Bodies Optimization method for optimum discrete

design of truss structures, Comput Struct 2014; 139: 43-53.
11. Kaveh A, Ilchi Ghazaan M. Enhanced colliding bodies optimization for design problems

with continuous and discrete variables, Adv Eng Softw 2014; 77: 66-75.
12. Kaveh A, Ilchi Ghazaan M. Enhanced colliding bodies algorithm for truss optimization

with frequency constraints, accepted for publication in J Comput Civil Eng, ASCE 2014.
13. Kaveh A, Ilchi Ghazaan M. A comparative study of CBO and ECBO for optimal design

of skeletal structures, Submitted for publication, 2014.
14. Kaveh A, Zolghadr A. Truss optimization with natural frequency constraints using a

hybridized CSS–BBBC algorithm with trap recognition capability, Comput Struct 2012;
102–103: 14–27.

15. American Institute of Steel Construction (AISC), Manual of steel construction: load and
resistance factor design, Chicago, 2001.

16. Kaveh A, Talatahari S. Hybrid algorithm of harmony search, particle swarm and ant
colony for structural design optimization, Stud Comput Intel 2009; 239: 159–98.

17. Kaveh A, Talatahari S. A discrete Big Bang-Big Crunch algorithm for optimal design of
skeletal structures, Asian J. Civil Eng 2010; 11:103-22.

18. Kaveh A, Talatahari S. Optimum design of skeletal structure using imperialist
competitive algorithm, Comput Struct 2010; 88: 1220-29.

19. Kaveh A, Talatahari S. Charged system search for optimal design of planar frame
structures, Appl Soft Comput 2012; 12: 382–93.

COMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION AND ITS ...

333

APPENDIX 1: CBO AND ECBO IN MATLAB

The CBO code in MATLAB:
% Colliding Bodies Optimization - CBO

% clear memory
clear all

% Initializing variables
popSize=20; % Size of the population
nVar=30; % number of optimization variables
xMin=-500; % lower bound of the variables
xMax=500; % upper bound of the variables
maxIt=200; % Maximum number of iteration

% Initializing Colliding Bodies (CB)
CB=xMin+rand(popSize,nVar).*(xMax-xMin); % random population

%%%
% Start iteration
iter=0; % counter
Inf=1e100; % infinity
bestCost=Inf; % initializing the best cost
agentCost=zeros(popSize,2); % array of agent costs

while iter < maxIt
 iter=iter+1;

 % Evaluating the population
 for e=1:popSize
 cost=eval(CB(e,:)); % evaluating objective function for each agent
 agentCost(e,1)=cost;
 agentCost(e,2)=e;
 end

 % Finding the best CB
 agentCost=sortrows(agentCost);
 if agentCost(1,1)<bestCost
 bestCost=agentCost(1,1);
 bestDesign=CB(agentCost(1,2),:); % the best design
 end

 % Evaluating the mass
 mass=zeros(popSize,1);
 for e=1:popSize
 mass(e,:)=1/(agentCost(e,1));
 end

 % Updating CB positions
 for e=1:popSize/2
 indexS=e; % index of stationary bodies
 indexM=popSize/2+e; % index of moving bodies
 COR=(1-(iter/maxIt)); % coefficient of restitution
 % velocity of moving bodies before collision

 velMb=(CB(agentCost(indexS,2),:)-CB(agentCost(indexM,2),:));
 % velocity of stationary bodies after collision

velSa=((1+COR)*mass(indexM,1))/(mass(indexS,1)+mass(indexM,1))*velMb;
 % velocity of moving bodies after collision

 velMa=(mass(indexM,1)-COR*mass(indexS,1))/(mass(indexS,1)…
 +mass(indexM,1))*velMb;

 CB(agentCost(indexM,2),:)=CB(agentCost(indexS,2),:)…
 +2*(0.5-rand(1,nVar)).*velMa;

 CB(agentCost(indexS,2),:)=CB(agentCost(indexS,2),:)…
 +2*(0.5-rand(1,nVar)).*velSa;

A. Kaveh and M. Ilchi Ghazaan

334

 end

end% while

disp(bestCost)
disp(bestDesign)

The ECBO code in MATLAB:
% Enhanced Colliding Bodies Optimization - ECBO

% clear memory
clear all

% Initializing variables
popSize=20; % Size of the population
nVar=30; % number of optimization variables
cMs=2; % Colliding memory size
pro=0.3;
xMin=-500; % lower bound of the variables
xMax=500; % upper bound of the variables
maxIt=200; % Maximum number of iteration

% Initializing Colliding Bodies (CB)
CB=xMin+rand(popSize,nVar).*(xMax-xMin); % random population

%%%
% Start iteration
iter=0; % counter
agentCost=zeros(popSize,2); % array of agent costs
Inf=1e100; % infinity
% Colliding memory; The first column contains CB costs and the remaining

columns include CB positions
cm=zeros(cMs,nVar+1);
tm=zeros(2*cMs,nVar+1); % Temporary memory
for e=1:cMs
 cm(e,1)=Inf;
end

while iter < maxIt
 iter=iter+1;

 % Evaluating the population
 for e=1:popSize
 cost=eval(CB(e,:)); % evaluating objective function for each agent
 agentCost(e,1)=cost;
 agentCost(e,2)=e;
 end

 % Updating colliding memory
 agentCost=sortrows(agentCost);
 if iter>1
 for e=1:cMs
 agentCost(popSize-cMs+e,1)=cm(e,1);
 for ee=1:nVar
 CB(agentCost(popSize-cMs+e,2),ee)=cm(e,ee+1);
 end
 end
 end
 for e=1:cMs
 tm(e,1)=agentCost(e,1);
 tm(e+cMs,1)=cm(e,1);
 for ee=1:nVar
 tm(e,ee+1)=CB(agentCost(e,2),ee);
 tm(e+cMs,ee+1)=cm(e,ee+1);

COMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION AND ITS ...

335

 end
 end
 tm=sortrows(tm);
 for e=1:cMs
 cm(e,:)=tm(e,:);
 end
 agentCost=sortrows(agentCost);

 % Evaluating the mass
 mass=zeros(popSize,1);
 for e=1:popSize
 mass(e,:)=1/(agentCost(e,1));
 end

 % Updating CB positions
 for e=1:popSize/2
 indexS=e; % index of stationary bodies
 indexM=popSize/2+e; % index of moving bodies
 COR=(1-(iter/maxIt)); % coefficient of restitution
 % velocity of moving bodies before collision

 velMb=(CB(agentCost(indexS,2),:)-CB(agentCost(indexM,2),:));
 % velocity of stationary bodies after collision

 velSa=((1+COR)*mass(indexM,1))/(mass(indexS,1)+mass(indexM,1))*velMb;
 % velocity of moving bodies after collision

 velMa=(mass(indexM,1)-COR*mass(indexS,1))/(mass(indexS,1)…
 +mass(indexM,1))*velMb;

 CB(agentCost(indexM,2),:)=CB(agentCost(indexS,2),:)…
 +2*(0.5-rand(1,nVar)).*velMa;

 CB(agentCost(indexS,2),:)=CB(agentCost(indexS,2),:)…
 +2*(0.5-rand(1,nVar)).*velSa;

 if rand<pro
 tmp=ceil(rand*nVar);
 CB(agentCost(indexS,2),tmp)=xMin+rand*(xMax-xMin);
 end
 if rand<pro
 tmp=ceil(rand*nVar);
 CB(agentCost(indexM,2),tmp)=xMin+rand*(xMax-xMin);
 end
 end

end% while

disp(cm(1,:))

APPENDIX 2: CBO AND ECBO IN C++

The CBO code in C++:
#include "util.h"

long double eval (matrix CB) {
 //...
}

class CBO{
 private:
 #define POPSIZE 20
 #define NVAR 30
 #define XMIN -32
 #define XMAX 32
 #define MAXIT 10000
 #define inf 1e100

A. Kaveh and M. Ilchi Ghazaan

336

 matrix CB;

 public:
 CBO (){
 CB = matrix(POPSIZE, NVAR);
 CB.fill_rand(XMIN, XMAX);
 }
 long double run(){
 long double best_cost = inf;
 matrix best_design;
 matrix fit1(POPSIZE, 2);
 for (int it=0; it<MAXIT; it++){
 //evaluating the population
 for (int e=0; e<POPSIZE; e++){
 //evaluating objective function for each agent
 long double cost = eval(CB.getrow(e));
 //long double cost;
 fit1.a[e][0] = cost;
 fit1.a[e][1] = e;
 }
 //finding the best CB
 fit1.sort(0, fit1.get_n());
 if (fit1.a[0][0] < best_cost){
 best_cost = fit1.a[0][0];
 best_design = CB.getrow((int)fit1.a[0][1]); //the best design
 }
 //evaluating the mass
 matrix mass(POPSIZE, 1);
 for (int e=0; e<POPSIZE; e++)
 mass.a[e][0] = 1.0/fit1.a[e][0];
 //updating CB positions
 for (int e=0; e<POPSIZE/2; e++){
 int index_s = e; //index of stationary bodies
 int index_m = POPSIZE/2 + e; //index of moving bodies
 //coefficient of restitution
 long double cor = 1.0 - (long double)it / MAXIT;
 // velocity of moving bodies before colllision
 matrix vel_mb = CB.getrow(fit1.a[index_s][1]) …
 - CB.getrow(fit1.a[index_m][1]);
 // velocity of stationary bodies after colllision
 matrix vel_sa = vel_mb * (((1+cor) * mass.a[index_m][0]) …
 / (mass.a[index_s][0] + mass.a[index_m][0]));
 // velocity of moving bodies after colllision
 matrix vel_ma = vel_mb * ((mass.a[index_m][0]- …

 cor*mass.a[index_s][0])/(mass.a[index_s][0] …
 +mass.a[index_m][0]));

 matrix rand1 = matrix(1,NVAR); rand1.fill_rand(-0.5,0.5);
 matrix rand2 = matrix(1,NVAR); rand2.fill_rand(-0.5,0.5);
 CB.a[fit1.a[index_m][1]] = (CB.getrow(fit1.a[index_s][1]) …
 + ((rand1 * 2.0) ^ vel_ma)).a[0];
 CB.a[fit1.a[index_s][1]] = (CB.getrow(fit1.a[index_s][1]) …
 + ((rand2 * 2.0) ^ vel_sa)).a[0];
 }
 }
 return best_cost;
 }
};

The ECBO code in C++:
#include "util.h"

long double eval (matrix CB) {
 //...
}

COMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION AND ITS ...

337

class ECBO{
 private:
 #define POPSIZE 20
 #define NVAR 30
 #define CMS 2
 #define PRO 0.25
 #define XMIN -32
 #define XMAX 32
 #define MAXIT 10000
 #define inf 1e100

 matrix CB;

 public:
 ECBO (){
 CB = matrix(POPSIZE, NVAR);
 CB.fill_rand(XMIN, XMAX);
 }
 long double run(){
 long double best_cost = inf;
 matrix best_design;
 matrix agent_cost(POPSIZE, 2);
 matrix cm(CMS, NVAR+1);
 matrix tm(2*CMS, NVAR+1);
 for (int e=0; e<CMS; e++)
 cm.a[e][0] = inf;
 for (int it=0; it<MAXIT; it++){
 //evaluating the population
 for (int e=0; e<POPSIZE; e++){
 //evaluating objective function for each agent
 long double cost = eval(CB.getrow(e));
 agent_cost.a[e][0] = cost;
 agent_cost.a[e][1] = e;
 }
 //updating colliding memory
 agent_cost.sort(0, agent_cost.get_n());
 if (it > 1){
 for (int e=0; e<CMS; e++){
 agent_cost.a[POPSIZE-CMS+e][0] = cm.a[e][0];
 for (int ee=0; ee<NVAR; ee++)
 CB.a[agent_cost.a[POPSIZE-CMS+e][1]][ee] = cm.a[e][ee+1];
 }
 }
 for (int e=0; e<CMS; e++){
 tm.a[e][0] = agent_cost.a[e][0];
 tm.a[e+CMS][0] = cm.a[e][0];
 for (int ee=0; ee<NVAR; ee++){
 tm.a[e][ee+1] = CB.a[agent_cost.a[e][1]][ee];
 tm.a[e+CMS][ee+1] = cm.a[e][ee+1];
 }
 }
 tm.sort(0, tm.get_n());
 for (int e=0; e<CMS; e++)
 cm.a[e] = tm.a[e];
 agent_cost.sort(0, agent_cost.get_n());
 //evaluating the mass
 matrix mass(POPSIZE, 1);
 for (int e=0; e<POPSIZE; e++)
 mass.a[e][0] = 1.0/agent_cost.a[e][0];
 //updating CB positions
 for (int e=0; e<POPSIZE/2; e++){
 int index_s = e; //index of stationary bodies
 int index_m = POPSIZE/2 + e; //index of moving bodies
 //coefficient of restitution
 long double cor = 1.0 - (long double)it / MAXIT;
 // velocity of moving bodies before colllision
 matrix vel_mb = CB.getrow(agent_cost.a[index_s][1]) …

A. Kaveh and M. Ilchi Ghazaan

338

 - CB.getrow(agent_cost.a[index_m][1]);
 % velocity of stationary bodies after collision
 matrix vel_sa = vel_mb * (((1+cor) * mass.a[index_m][0]) …
 / (mass.a[index_s][0] + mass.a[index_m][0]));
 // velocity of moving bodies after colllision
 matrix vel_ma = vel_mb * ((mass.a[index_m][0]- …

 cor*mass.a[index_s][0])/(mass.a[index_s][0]
 +mass.a[index_m][0]));

 matrix rand1 = matrix(1,NVAR); rand1.fill_rand(-0.5,0.5);
 matrix rand2 = matrix(1,NVAR); rand2.fill_rand(-0.5,0.5);
 CB.a[agent_cost.a[index_m][1]] = …

 (CB.getrow(agent_cost.a[index_s][1]) …
 + ((rand1 * 2.0) ^ vel_ma)).a[0];

 CB.a[agent_cost.a[index_s][1]] = …
 (CB.getrow(agent_cost.a[index_s][1]) …
 + ((rand2 * 2.0) ^ vel_sa)).a[0];
 assert (agent_cost.a[12].size() == 2);
 if (next_random(0.0,1.0) < PRO){
 int tmp = ceil(next_random(1e-10, 1.0) * NVAR) - 1;
 CB.a[agent_cost.a[index_s][1]][tmp] = next_random(XMIN, XMAX);
 }
 assert (agent_cost.a[12].size() == 2);
 if (next_random(0.0,1.0) < PRO){
 int tmp = ceil(next_random(1e-10, 0.1) * NVAR) - 1;
 CB.a[agent_cost.a[index_s][1]][tmp] = next_random(XMIN, XMAX);
 }
 }
 }
 return cm.a[0][0];
 }
};

#include <bits/stdc++.h>
using namespace std;

long double next_random (long double lo, long double hi){
 #define MAXRANDOM 16000
 int r = rand() % MAXRANDOM;
 return lo + (r / ((long double)MAXRANDOM-1)) * (hi - lo);
}

class matrix{
 public:
 vector < vector<long double> > a;
 matrix () {}
 matrix (int n, int m){
 a = vector < vector<long double> > (n, vector<long double>(m, 0.0));
 }
 int get_n () { return a.size(); }
 int get_m () { return a[0].size(); }

 void fill_rand(long double lo, long double hi){
 for (int i=0; i<a.size(); i++)
 for (int j=0; j<a[i].size(); j++)
 a[i][j] = next_random(lo,hi);
 }
 matrix operator + (const long double &val) const{
 matrix ret = *this;
 for (int i=0; i<ret.a.size(); i++)
 for (int j=0; j<ret.a[i].size(); j++)
 ret.a[i][j]+= val;
 return ret;
 }
 matrix operator + (const matrix &operand) const{

COMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION AND ITS ...

339

 matrix ret = *this;
 for (int i=0; i<operand.a.size(); i++)
 for (int j=0; j<operand.a[i].size(); j++)
 ret.a[i][j]+= operand.a[i][j];
 return ret;
 }
 matrix operator - (const long double &val) const{
 return (*this) + (-val);
 }
 matrix operator - (const matrix &operand) const{
 matrix ret = *this;
 for (int i=0; i<operand.a.size(); i++)
 for (int j=0; j<operand.a[i].size(); j++)
 ret.a[i][j]-= operand.a[i][j];
 return ret;
 }
 matrix operator * (const long double &coeff) const{
 matrix ret = *this;
 for (int i=0; i<ret.a.size(); i++)
 for (int j=0; j<ret.a[i].size(); j++)
 ret.a[i][j]*= coeff;
 return ret;
 }
 matrix operator * (const matrix &operand) const{
 matrix ret(a.size(), a[0].size());
 for (int i=0; i<ret.a.size(); i++)
 for (int j=0; j<ret.a[i].size(); j++)
 for (int k=0; k<a[i].size(); k++)
 ret.a[i][j] = (ret.a[i][j] + a[i][k] * operand.a[k][j]);
 return ret;
 }
 matrix operator ^ (const matrix &operand) const{
 matrix ret = *this;
 for (int i=0; i<ret.a.size(); i++)
 for (int j=0; j<ret.a[i].size(); j++)
 ret.a[i][j]*= operand.a[i][j];
 return ret;
 }
 void sort (int i, int j){
 std::sort(a.begin()+i, a.begin()+j);
 }
 matrix getrow (int r){
 matrix ret(1, a[0].size());
 ret.a[0] = a[r];
 return ret;
 }
};

