
 

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING  
Int. J. Optim. Civil Eng., 2014; 4(3):321-339 

 
 
 

COMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION 
AND ITS ENHANCED VERSION 

 
 

A. Kaveh*,† and M. Ilchi Ghazaan 
Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of 

Science and Technology, Narmak, Tehran, P.O. Box 16846-13114, Iran 
 
 

ABSTRACT 
 

Colliding bodies optimization (CBO) is a new population-based stochastic optimization 
algorithm based on the governing laws of one dimensional collision between two bodies 
from the physics. Each agent is modeled as a body with a specified mass and velocity. A 
collision occurs between pairs of objects to find the global or near-global solutions. 
Enhanced colliding bodies optimization (ECBO) uses memory to save some best solutions 
and utilizes a mechanism to escape from local optima. The performances of the CBO and 
ECBO are shown through truss and frame design optimization problems. The codes of these 
methods are presented in MATLAB and C++. 
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1. INTRODUCTION 
 

Meta-heuristics are the recent generation of the optimization methods that are proposed to 
solve complex problems. The basic idea behind these stochastic search techniques is usually 
to simulate the natural phenomena. Genetic algorithm (GA) is inspired by Darwin’s theory 
about biological evolutions [1] and [2]. Particle swarm optimization (PSO) simulates the 
social interaction behavior of birds flocking and fish schooling [3] and [4]. Ant colony 
optimization (ACO) imitates the way that ant colonies find the shortest route between the 

                                                   
*Corresponding author: Department of Civil Engineering, Iran University of Science and Technology, 
Narmak, Tehran, Iran 
†E-mail address: alikaveh@iust.ac.ir (A. Kaveh) 



A. Kaveh and M. Ilchi Ghazaan 

 

322 

food and their nest [5]. Harmony search (HS) algorithm was conceptualized using the 
musical process of searching for a perfect state of harmony [6]. Charged system search 
(CSS) uses the electric laws of physics and the Newtonian laws of mechanics to guide the 
Charged Particles [7]. 

As a newly developed type of meta-heuristic algorithm, colliding bodies optimization 
(CBO) is introduced and applied to structural problems by Kaveh and Mahdavi [8-10]. The 
CBO is multi-agent algorithm inspired by a collision between two objects in one-dimension. 
Each agent is modeled as a body with a specified mass and velocity. A collision occurs 
between pairs of objects and the new positions of the colliding bodies are updated based on 
the collision laws. The enhanced colliding bodies optimization (ECBO) is introduced by the 
authors [11] and it uses memory to save some historically best solution to improve the CBO 
performance without increasing the computational cost. In this method, some components of 
agents are also changed to jump out from local minimum. 

The remainder of this paper is organized as follows: The CBO and ECBO algorithms are 
briefly presented in Section 2. In order to show the performance of these techniques on 
structural optimization, section 3 includes truss and frame examples. The last section 
concludes the paper. 

Computer codes in Matlab and C++ are provided in the Appendix 1 and Appendix 2, 
respectively. 
 
 

2. OPTIMIZATION ALGORITHMS 
 
2.1 Colliding bodies optimization (CBO) 

Colliding bodies optimization (CBO) is a new meta-heuristic search algorithm that is 
developed by Kaveh and Mahdavi [8]. In this technique, one object collides with other 
object and they move towards a minimum energy level. The CBO is simple in concept and 
does not depend on any internal parameter. Each colliding body (CB), Xi, has a specified 
mass defined as: 
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where fit(i) represents the objective function value of the ith CB and n is the number of 
colliding bodies. 

In order to select pairs of objects for collision, CBs are sorted according to their mass in a 
decreasing order and they are divided into two equal groups: (i) stationary group, (ii) 
moving group (Fig. 1). Moving objects collide to stationary objects to improve their 
positions and push stationary objects towards better positions. The velocities of the 
stationary and moving bodies before collision (vi) are calculated by 
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Figure 1. The pairs of CBs for collision [13] 

 
The velocity of stationary and moving CBs after the collision (v'i) are evaluated by 
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where iter and itermax are the current iteration number and the total number of iteration for 
optimization process, respectively. ε is the coefficient of restitution (COR). 

New positions of each group are updated by 
 

2
,...,2,1,'

n
ivrandxx ii

new
i    (7)

n
nn

ivrandxx in
i

new
i ,...,2

2
,1

2
,'

2




  (8)

 
where xi

new, xi and v'i are the new position, previous position and the velocity after the 
collision of the ith CB, respectively. rand is a random vector uniformly distributed in the 
range of [1,1] and the sign ‘‘°’’ denotes an element-by-element multiplication. 

The flowchart of CBO algorithm is depicted in Fig. 2. MATLAB and C++ codes for 
CBO are presented in Appendices 1 and 2. 
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Figure 2. Flowchart of the CBO algorithm 

 
2.2 Enhanced colliding bodies optimization (ECBO) 

In order to improve CBO to get faster and more reliable solutions, Enhanced Colliding 
Bodies Optimization (ECBO) was developed which uses memory to save a number of 
historically best CBs and also utilizes a mechanism to escape from local optima [11]. The 
flowchart of ECBO is shown in Fig. 3 and its codes in MATLAB and C++ are presented in 
Appendix 1 and 2. The steps of this technique are given as follows: 

Level 1: Initialization 
Step 1: The initial positions of all CBs are determined randomly in an m-dimensional 

search space. 
 

nixxrandomxxi ,...,2,1),( minmaxmin
0    (9) 
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Figure 3. Flowchart of the ECBO algorithm [11] 

 
where xi

0 is the initial solution vector of the ith CB. Here, xmin and xmax are the bounds of 
design variables; random is a random vector which each component is in the interval [0, 1]. 

Level 2: Search 
Step 1: The value of mass for each CB is evaluated according to Eq. (1). 
Step 2: Colliding memory (CM) is utilized to save a number of historically best CB 

vectors and their related mass and objective function values. Solution vectors which are 
saved in CM are added to the population and the same number of current worst CBs are 
deleted. Finally, CBs are sorted according to their masses in a decreasing order. 

Step 3: CBs are divided into two equal groups: (i) stationary group, (ii) moving group 
(Fig. 1). 

Step 4: The velocities of stationary and moving bodies before collision are evaluated by 
Eqs. (2) and (3), respectively. 
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Step 5: The velocities of stationary and moving bodies after the collision are evaluated 
using Eqs. (4) and (5), respectively. 

Step 6: The new position of each CB is calculated by Eqs. (7) and (8). 
Step 7: A parameter like Pro within (0, 1) is introduced and it is specified whether a 

component of each CB must be changed or not. For each colliding body Pro is compared with 
rni (i=1,2,…,n) which is a random number uniformly distributed within (0, 1). If rni < pro, one 
dimension of the ith CB is selected randomly and its value is regenerated as follows: 

 
).( min,max,min, jjjij xxrandomxx  (10)

 
where xij is the jth variable of the ith CB. xj,min and xj,max respectively, are the lower and 
upper bounds of the jth variable. In order to protect the structures of CBs, only one 
dimension is changed. 

Level 3: Terminal condition check 
Step 1: After the predefined maximum evaluation number, the optimization process is 

terminated. 
 
 

3. NUMERICAL EXAMPLES 
 

In this paper, the goal is to find optimum values for member cross-sectional areas that 
minimize the structural weight while satisfying some constraints. The minimum weight 
design problem can be formulated as: 
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where {X} is the vector containing the design variables; ng is the number of design 
variables; W({X}) presents weight of the structure; nm is the number of elements of the 
structure; ρi and Li denotes the material density and the length of the ith member, 
respectively. ximin and ximax are the lower and upper bounds of the design variable xi, 
respectively. gj({X}) denotes design constraints; and n is the number of the constraints. The 
constraints are handled using the well-known penalty approach. 

The performances of the standard CBO and ECBO are evaluated through two standard 
design optimization problems. The investigated instances consist of the 200-bar planar truss [12] 
and the 3-bay 15-story frame [13]. The population of 20 and 40 CBs are utilized for truss and 
frame problems, respectively. The predefined maximum evaluation number is considered as 
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20,000 analyses for two examples. To reduce statistical errors, each test is repeated 20 times. 
3.1 A 200-bar planar truss 

The 200-bar plane truss is shown in Fig. 4. The elastic modulus is 210 GPa and the material 
density is 7,860 kg/m3 for all elements. Non-structural masses of 100 kg are attached to the 
nodes 1 to 5. The minimum admissible cross-sectional areas are 0.1 cm2. Because of the 
symmetry, the bars are categorized into 29 groups. The first three natural frequencies of the 
structure are assumed as the constraints (f1 ≥ 5 Hz, f2 ≥ 10 Hz, f3 ≥ 15 Hz). 

Table 1 illustrates the best solution vectors, the corresponding weights and mean weights of 
the CSS-BBBC [14], standard CBO and ECBO [12]. Table 2 represents the natural frequencies 
of the optimized structures. None of the frequency constraints are violated. The ECBO 
algorithm finds the best design among the other methods, which is 2158.08 kg. The best 
weights for CSS-BBBC and standard CBO are 2298.61 kg and 2161.15 kg, respectively. 

 

 
Figure 4. Schematic of the 200-bar planar truss [12] 
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Table 1: Optimal design obtained for the 200-bar planar truss 

Element group Members in the group 
Areas (cm2) 

Kaveh and Zolghadr [14] 
Present work 

CBO ECBO
1 1,2,3,4 0.2934 0.3059 0.2993 
2 5,8,11,14,17 0.5561 0.4476 0.4497 
3 19,20,21,22,23,24 0.2952 0.1000 0.1000 
4 18,25,56,63,94,101,132,139,170,177 0.1970 0.1001 0.1 
5 26,29,32,35,38 0.8340 0.4944 0.5137 

6 
6,7,9,10,12,13,15,16,27,28,30,31,33, 

34,36,37 
0.6455 0.8369 0.7914 

7 39,40,41,42 0.1770 0.1001 0.1013
8 43,46,49,52,55 1.4796 1.5514 1.4129
9 57,58,59,60,61,62 0.4497 0.1000 0.1019 
10 64,67,70,73,76 1.4556 1.5286 1.6460 

11 
44,45,47,48,50,51,53,54,65,66,68,69, 

71,72,74,75 
1.2238 1.1547 1.1532 

12 77,78,79,80 0.2739 0.1000 0.1000 
13 81,84,87,90,93 1.9174 2.9980 3.1850 
14 95,96,97,98,99,100 0.1170 0.1017 0.1034 
15 102,105,108,111,114 3.5535 3.2475 3.3126

16 
82,83,85,86,88,89,91,92,103,104,106, 

107,109,110,112,113 
1.3360 1.5213 1.5920 

17 115,116,117,118 0.6289 0.3996 0.2238 
18 119,122,125,128,131 4.8335 4.7557 5.1227 
19 133,134,135,136,137,138 0.6062 0.1002 0.1050 
20 140,143,146,149,152 5.4393 5.1359 5.3707 

21 
120,121,123,124,126,127,129,130,141, 

142,144,145,147,148,150,151
1.8435 2.1181 2.0645 

22 153,154,155,156 0.8955 0.9200 0.5443 
23 157,160,163,166,169 8.1759 7.3084 7.6497 
24 171,172,173,174,175,176 0.3209 0.1185 0.1000 
25 178,181,184,187,190 10.98 7.6901 7.6754 

26 
158,159,161,162,164,165,167,168,179, 

180,182,183,185,186,188,189 
2.9489 3.0895 2.7178 

27 191,192,193,194 10.5243 10.6462 10.8141 
28 195,197,198,200 20.4271 20.7190 21.6349
29 196,199 19.0983 11.7463 10.3520 

Weight (kg)  2298.61 2161.15 2158.08 
Mean weight (kg)  N/A 2447.52 2159.93 

 
 

Table 2: Optimal design of the natural frequencies (Hz) 

Frequency number 
Natural frequencies (Hz) 

Kaveh and Zolghadr [14] 
Present work 

CBO ECBO 
1 5.010 5.000 5.000 
2 12.911 12.221 12.189 
3 15.416 15.088 15.048 
4 17.033 16.759 16.643 
5 21.426 21.419 21.342 
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6 21.613 21.501 21.382 

Fig. 5 depicts the best and average convergence history for the results of the standard 
CBO and ECBO. The standard CBO algorithm needs about 10,500 analyses to find the best 
solution while this number is about 14,700 analyses for the ECBO algorithm. It should be 
noted that the design found by ECBO at 10,500th analysis is lighter than that found by 
standard CBO at the same analysis. 

 

 
Figure 5. The convergence curve for the 200-bar planar truss [12] 

 
3.2 A 3-bay 15-story frame 

The configuration, applied loads and the numbering of member groups for this problem is 
shown in Fig. 6. The modulus of elasticity is 29,000 ksi (200 GPa) and the yield stress is 36 
ksi (248.2 MPa) for all members. The effective length factors of the members are calculated 
as kx≥0 for a sway-permitted frame and the out-of-plane effective length factor is specified 
as ky=1.0. Each column is considered as non-braced along its length, and the non-braced 
length for each beam member is specified as one-fifth of the span length. The frame is 
designed following the LRFD specification and uses an inter-story drift displacement 
constraint [15]. Also, the sway of the top story is limited to 9.25 in (23.5 cm). 

Table 3 shows the best solution vectors, the corresponding weights and the average 
weights for present algorithms and some other meta-heuristic algorithms [13]. ECBO has 
obtained the lightest design compared to other methods. The best weight of the ECBO 
algorithm is 86,986 lb while it is 95,850 lb for the HPSACO [16], 97,689 lb for the HBB-
BC [17], 93,846 lb for the ICA [18], 92,723 lb for CSS [19] and 93,795 lb for the CBO. The 
CBO and ECBO algorithms get the optimal solution after 9,520 and 9,000 analyses, 
respectively. Convergence history of the present algorithms for the best and average 
optimum designs is depicted in Fig. 7. It can be seen that the convergence rate of the ECBO 
algorithm is higher than the CBO. 
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Figure 6. Schematic of the 3-bay 15-story frame [13] 
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Figure 7. The convergence curve for the 3-bay 15-story frame [13] 

 
Table 3: Optimal design obtained for the 3-bay 15-story frame 

Element group 
Optimal W-shaped sections 

HPSACO 
[16] 

HBB-BC 
[17] 

ICA 
[18] 

CSS 
[19] 

Present work 
CBO ECBO 

1 W21×111 W24×117 W24×117 W21×147 W24×104 W14×99 
2 W18×158 W21×132 W21×147 W18×143 W40×167 W27×161
3 W10×88 W12×95 W27×84 W12×87 W27×84 W27×84 
4 W30×116 W18×119 W27×114 W30×108 W27×114 W24×104 
5 W21×83 W21×93 W14×74 W18×76 W21×68 W14×61 
6 W24×103 W18×97 W18×86 W24×103 W30×90 W30×90 
7 W21×55 W18×76 W12×96 W21×68 W8×48 W14×48 
8 W27×114 W18×65 W24×68 W14×61 W21×68 W14×61 
9 W10×33 W18×60 W10×39 W18×35 W14×34 W14×30 

10 W18×46 W10×39 W12×40 W10×33 W8×35 W12×40 
11 W21×44 W21×48 W21×44 W21×44 W21×50 W21×44

Weight (lb) 95,850 97,689 93,846 92,723 93,795 86,986 
Mean weight (lb) N/A N/A N/A N/A 98,738 88,410 

 
 

4. CONCLUSION 
 
In the CBO, each solution vector is considered as a colliding body and the governing laws of 
collision from the physics is the base of this technique, where these laws determine the 
movement process of the CBs. The CBO has a simple formulation, and it requires no 
internal parameter tuning. Enhanced colliding bodies optimization (ECBO) uses memory to 
save a number of historically best CBs and also utilizes the random perturbation mechanism 
to update the positions. The introduction of memory can increase the convergence speed of 
ECBO with respect to CBO. Furthermore, changing some components of colliding bodies 
will help ECBO to escape from local minima. 
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APPENDIX 1: CBO AND ECBO IN MATLAB 
 
The CBO code in MATLAB: 
% Colliding Bodies Optimization - CBO 
  
% clear memory 
clear all 
  
% Initializing variables 
popSize=20;     % Size of the population 
nVar=30;        % number of optimization variables 
xMin=-500;      % lower bound of the variables 
xMax=500;       % upper bound of the variables 
maxIt=200;      % Maximum number of iteration 
  
% Initializing Colliding Bodies (CB) 
CB=xMin+rand(popSize,nVar).*(xMax-xMin); % random population 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Start iteration 
iter=0;                     % counter 
Inf=1e100;                  % infinity 
bestCost=Inf;               % initializing the best cost 
agentCost=zeros(popSize,2); % array of agent costs 
  
while iter < maxIt 
    iter=iter+1; 
     
    % Evaluating the population 
    for e=1:popSize 
        cost=eval(CB(e,:)); % evaluating objective function for each agent 
        agentCost(e,1)=cost; 
        agentCost(e,2)=e; 
    end 
     
    % Finding the best CB 
    agentCost=sortrows(agentCost); 
    if agentCost(1,1)<bestCost 
        bestCost=agentCost(1,1); 
        bestDesign=CB(agentCost(1,2),:); % the best design 
    end 
     
    % Evaluating the mass 
    mass=zeros(popSize,1); 
    for e=1:popSize 
        mass(e,:)=1/(agentCost(e,1)); 
    end 
     
    % Updating CB positions 
    for e=1:popSize/2 
        indexS=e;           % index of stationary bodies 
        indexM=popSize/2+e;   % index of moving bodies 
        COR=(1-(iter/maxIt)); % coefficient of restitution 
        % velocity of moving bodies before collision 

    velMb=(CB(agentCost(indexS,2),:)-CB(agentCost(indexM,2),:)); 
        % velocity of stationary bodies after collision 

velSa=((1+COR)*mass(indexM,1))/(mass(indexS,1)+mass(indexM,1))*velMb; 
        % velocity of moving bodies after collision 

  velMa=(mass(indexM,1)-COR*mass(indexS,1))/(mass(indexS,1)… 
       +mass(indexM,1))*velMb;  

        CB(agentCost(indexM,2),:)=CB(agentCost(indexS,2),:)… 
   +2*(0.5-rand(1,nVar)).*velMa; 

        CB(agentCost(indexS,2),:)=CB(agentCost(indexS,2),:)… 
   +2*(0.5-rand(1,nVar)).*velSa; 
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    end 
 
end% while 
 
disp(bestCost) 
disp(bestDesign) 

 
The ECBO code in MATLAB: 
% Enhanced Colliding Bodies Optimization - ECBO 
  
% clear memory 
clear all 
  
% Initializing variables 
popSize=20;     % Size of the population 
nVar=30;        % number of optimization variables 
cMs=2;          % Colliding memory size 
pro=0.3; 
xMin=-500;      % lower bound of the variables 
xMax=500;       % upper bound of the variables 
maxIt=200;      % Maximum number of iteration 
  
% Initializing Colliding Bodies (CB) 
CB=xMin+rand(popSize,nVar).*(xMax-xMin); % random population 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Start iteration 
iter=0;                     % counter 
agentCost=zeros(popSize,2); % array of agent costs 
Inf=1e100;                  % infinity 
% Colliding memory; The first column contains CB costs and the remaining 

columns include CB positions 
cm=zeros(cMs,nVar+1); 
tm=zeros(2*cMs,nVar+1);     % Temporary memory 
for e=1:cMs 
    cm(e,1)=Inf; 
end 
  
while iter < maxIt 
    iter=iter+1; 
     
    % Evaluating the population 
    for e=1:popSize 
        cost=eval(CB(e,:)); % evaluating objective function for each agent 
        agentCost(e,1)=cost; 
        agentCost(e,2)=e; 
    end 
     
    % Updating colliding memory 
    agentCost=sortrows(agentCost); 
    if iter>1 
        for e=1:cMs 
            agentCost(popSize-cMs+e,1)=cm(e,1); 
            for ee=1:nVar 
                CB(agentCost(popSize-cMs+e,2),ee)=cm(e,ee+1); 
            end 
        end 
    end 
    for e=1:cMs 
        tm(e,1)=agentCost(e,1); 
        tm(e+cMs,1)=cm(e,1); 
        for ee=1:nVar 
            tm(e,ee+1)=CB(agentCost(e,2),ee); 
            tm(e+cMs,ee+1)=cm(e,ee+1); 
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        end 
    end 
    tm=sortrows(tm); 
    for e=1:cMs 
        cm(e,:)=tm(e,:); 
    end 
    agentCost=sortrows(agentCost); 
     
    % Evaluating the mass 
    mass=zeros(popSize,1); 
    for e=1:popSize 
        mass(e,:)=1/(agentCost(e,1)); 
    end 
     
    % Updating CB positions 
    for e=1:popSize/2 
        indexS=e;      % index of stationary bodies 
        indexM=popSize/2+e;   % index of moving bodies 
        COR=(1-(iter/maxIt)); % coefficient of restitution 
        % velocity of moving bodies before collision 

    velMb=(CB(agentCost(indexS,2),:)-CB(agentCost(indexM,2),:)); 
    % velocity of stationary bodies after collision  

       velSa=((1+COR)*mass(indexM,1))/(mass(indexS,1)+mass(indexM,1))*velMb; 
        % velocity of moving bodies after collision 

    velMa=(mass(indexM,1)-COR*mass(indexS,1))/(mass(indexS,1)… 
   +mass(indexM,1))*velMb; 

        CB(agentCost(indexM,2),:)=CB(agentCost(indexS,2),:)… 
   +2*(0.5-rand(1,nVar)).*velMa; 

        CB(agentCost(indexS,2),:)=CB(agentCost(indexS,2),:)… 
     +2*(0.5-rand(1,nVar)).*velSa; 

        if rand<pro 
            tmp=ceil(rand*nVar); 
            CB(agentCost(indexS,2),tmp)=xMin+rand*(xMax-xMin); 
        end 
        if rand<pro 
            tmp=ceil(rand*nVar); 
            CB(agentCost(indexM,2),tmp)=xMin+rand*(xMax-xMin); 
        end    
    end 
  
end% while 
  
disp(cm(1,:)) 

 
 

APPENDIX 2: CBO AND ECBO IN C++ 
 
The CBO code in C++: 
#include "util.h" 
 
long double eval (matrix CB) { 
  //... 
} 
 
class CBO{ 
  private: 
    #define POPSIZE 20 
    #define NVAR 30 
    #define XMIN -32 
    #define XMAX 32 
    #define MAXIT 10000 
    #define inf 1e100 
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    matrix CB;  
 
  public: 
    CBO (){ 
      CB = matrix(POPSIZE, NVAR); 
      CB.fill_rand(XMIN, XMAX); 
    } 
    long double run(){ 
      long double best_cost = inf; 
      matrix best_design; 
      matrix fit1(POPSIZE, 2); 
      for (int it=0; it<MAXIT; it++){ 
        //evaluating the population 
        for (int e=0; e<POPSIZE; e++){ 
   //evaluating objective function for each agent 
          long double cost = eval(CB.getrow(e));  
          //long double cost; 
          fit1.a[e][0] = cost; 
          fit1.a[e][1] = e; 
        } 
        //finding the best CB 
        fit1.sort(0, fit1.get_n()); 
        if (fit1.a[0][0] < best_cost){ 
          best_cost = fit1.a[0][0];  
          best_design = CB.getrow((int)fit1.a[0][1]); //the best design 
        } 
        //evaluating the mass 
        matrix mass(POPSIZE, 1); 
        for (int e=0; e<POPSIZE; e++) 
          mass.a[e][0] = 1.0/fit1.a[e][0]; 
        //updating CB positions  
        for (int e=0; e<POPSIZE/2; e++){ 
          int index_s = e;          //index of stationary bodies  
          int index_m = POPSIZE/2 + e;   //index of moving bodies 
   //coefficient of restitution 
          long double cor = 1.0 - (long double)it / MAXIT; 
   // velocity of moving bodies before colllision 
          matrix vel_mb = CB.getrow(fit1.a[index_s][1]) …  
     - CB.getrow(fit1.a[index_m][1]); 
   // velocity of stationary bodies after colllision 
          matrix vel_sa = vel_mb * (((1+cor) * mass.a[index_m][0]) … 
     / (mass.a[index_s][0] + mass.a[index_m][0])); 
   // velocity of moving bodies after colllision 
          matrix vel_ma = vel_mb * ((mass.a[index_m][0]- … 

    cor*mass.a[index_s][0])/(mass.a[index_s][0] … 
    +mass.a[index_m][0])); 

          matrix rand1 = matrix(1,NVAR); rand1.fill_rand(-0.5,0.5); 
          matrix rand2 = matrix(1,NVAR); rand2.fill_rand(-0.5,0.5); 
          CB.a[fit1.a[index_m][1]] = (CB.getrow(fit1.a[index_s][1]) … 
         + ((rand1 * 2.0) ^ vel_ma)).a[0];   
          CB.a[fit1.a[index_s][1]] = (CB.getrow(fit1.a[index_s][1]) … 
         + ((rand2 * 2.0) ^ vel_sa)).a[0];   
        } 
      } 
      return best_cost; 
    } 
}; 

 
The ECBO code in C++: 
#include "util.h" 
 
long double eval (matrix CB) { 
  //... 
} 
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class ECBO{ 
  private: 
    #define POPSIZE 20 
    #define NVAR 30  
    #define CMS 2 
    #define PRO 0.25 
    #define XMIN -32 
    #define XMAX 32 
    #define MAXIT 10000 
    #define inf 1e100 
     
    matrix CB;  
 
  public: 
    ECBO (){ 
      CB = matrix(POPSIZE, NVAR); 
      CB.fill_rand(XMIN, XMAX); 
    } 
    long double run(){ 
      long double best_cost = inf; 
      matrix best_design; 
      matrix agent_cost(POPSIZE, 2); 
      matrix cm(CMS, NVAR+1); 
      matrix tm(2*CMS, NVAR+1); 
      for (int e=0; e<CMS; e++) 
        cm.a[e][0] = inf; 
      for (int it=0; it<MAXIT; it++){ 
        //evaluating the population 
        for (int e=0; e<POPSIZE; e++){ 
   //evaluating objective function for each agent 
          long double cost = eval(CB.getrow(e)); 
          agent_cost.a[e][0] = cost; 
          agent_cost.a[e][1] = e; 
        } 
        //updating colliding memory 
        agent_cost.sort(0, agent_cost.get_n()); 
        if (it > 1){ 
          for (int e=0; e<CMS; e++){ 
            agent_cost.a[POPSIZE-CMS+e][0] = cm.a[e][0]; 
            for (int ee=0; ee<NVAR; ee++) 
              CB.a[agent_cost.a[POPSIZE-CMS+e][1]][ee] = cm.a[e][ee+1]; 
          } 
        } 
        for (int e=0; e<CMS; e++){ 
          tm.a[e][0] = agent_cost.a[e][0]; 
          tm.a[e+CMS][0] = cm.a[e][0]; 
          for (int ee=0; ee<NVAR; ee++){ 
            tm.a[e][ee+1] = CB.a[agent_cost.a[e][1]][ee]; 
            tm.a[e+CMS][ee+1] = cm.a[e][ee+1]; 
          } 
        } 
        tm.sort(0, tm.get_n()); 
        for (int e=0; e<CMS; e++) 
          cm.a[e] = tm.a[e]; 
        agent_cost.sort(0, agent_cost.get_n()); 
        //evaluating the mass 
        matrix mass(POPSIZE, 1); 
        for (int e=0; e<POPSIZE; e++) 
          mass.a[e][0] = 1.0/agent_cost.a[e][0]; 
        //updating CB positions  
        for (int e=0; e<POPSIZE/2; e++){ 
          int index_s = e;          //index of stationary bodies  
          int index_m = POPSIZE/2 + e;   //index of moving bodies 
   //coefficient of restitution 
          long double cor = 1.0 - (long double)it / MAXIT; 
  // velocity of moving bodies before colllision 
          matrix vel_mb = CB.getrow(agent_cost.a[index_s][1]) … 
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     - CB.getrow(agent_cost.a[index_m][1]); 
   % velocity of stationary bodies after collision 
          matrix vel_sa = vel_mb * (((1+cor) * mass.a[index_m][0]) …  
     / (mass.a[index_s][0] + mass.a[index_m][0])); 
   // velocity of moving bodies after colllision  
          matrix vel_ma = vel_mb * ((mass.a[index_m][0]- … 

     cor*mass.a[index_s][0])/(mass.a[index_s][0] 
     +mass.a[index_m][0])); 

          matrix rand1 = matrix(1,NVAR); rand1.fill_rand(-0.5,0.5); 
          matrix rand2 = matrix(1,NVAR); rand2.fill_rand(-0.5,0.5); 
          CB.a[agent_cost.a[index_m][1]] = … 

   (CB.getrow(agent_cost.a[index_s][1]) … 
      + ((rand1 * 2.0) ^ vel_ma)).a[0];   

          CB.a[agent_cost.a[index_s][1]] = … 
           (CB.getrow(agent_cost.a[index_s][1]) … 
      + ((rand2 * 2.0) ^ vel_sa)).a[0];   
          assert (agent_cost.a[12].size() == 2); 
          if (next_random(0.0,1.0) < PRO){ 
            int tmp = ceil(next_random(1e-10, 1.0) * NVAR) - 1; 
            CB.a[agent_cost.a[index_s][1]][tmp] = next_random(XMIN, XMAX); 
          } 
          assert (agent_cost.a[12].size() == 2); 
          if (next_random(0.0,1.0) < PRO){ 
            int tmp = ceil(next_random(1e-10, 0.1) * NVAR) - 1; 
            CB.a[agent_cost.a[index_s][1]][tmp] = next_random(XMIN, XMAX); 
          }     
        } 
      } 
      return cm.a[0][0]; 
    } 
}; 

 
 
#include <bits/stdc++.h> 
using namespace std; 
 
long double next_random (long double lo, long double hi){ 
  #define MAXRANDOM 16000 
  int r = rand() % MAXRANDOM; 
  return lo + (r / ((long double)MAXRANDOM-1)) * (hi - lo); 
} 
 
class matrix{ 
  public: 
    vector < vector<long double> > a; 
    matrix () {} 
    matrix (int n, int m){ 
      a = vector < vector<long double> > (n, vector<long double>(m, 0.0)); 
    } 
    int get_n () { return a.size(); } 
    int get_m () { return a[0].size(); } 
 
    void fill_rand(long double lo, long double hi){ 
      for (int i=0; i<a.size(); i++) 
        for (int j=0; j<a[i].size(); j++) 
          a[i][j] = next_random(lo,hi); 
    } 
    matrix operator + (const long double &val) const{ 
      matrix ret = *this; 
      for (int i=0; i<ret.a.size(); i++) 
        for (int j=0; j<ret.a[i].size(); j++) 
          ret.a[i][j]+= val; 
      return ret; 
    } 
    matrix operator + (const matrix &operand) const{ 
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      matrix ret = *this; 
      for (int i=0; i<operand.a.size(); i++) 
        for (int j=0; j<operand.a[i].size(); j++) 
          ret.a[i][j]+= operand.a[i][j]; 
      return ret; 
    } 
    matrix operator - (const long double &val) const{ 
      return (*this) + (-val); 
    } 
    matrix operator - (const matrix &operand) const{ 
      matrix ret = *this; 
      for (int i=0; i<operand.a.size(); i++) 
        for (int j=0; j<operand.a[i].size(); j++) 
          ret.a[i][j]-= operand.a[i][j]; 
      return ret; 
    } 
    matrix operator * (const long double &coeff) const{ 
      matrix ret = *this; 
      for (int i=0; i<ret.a.size(); i++) 
        for (int j=0; j<ret.a[i].size(); j++) 
          ret.a[i][j]*= coeff; 
      return ret; 
    } 
    matrix operator * (const matrix &operand) const{ 
      matrix ret(a.size(), a[0].size()); 
      for (int i=0; i<ret.a.size(); i++) 
        for (int j=0; j<ret.a[i].size(); j++) 
          for (int k=0; k<a[i].size(); k++) 
            ret.a[i][j] = (ret.a[i][j] + a[i][k] * operand.a[k][j]); 
      return ret; 
    } 
    matrix operator ^ (const matrix &operand) const{ 
      matrix ret = *this; 
      for (int i=0; i<ret.a.size(); i++) 
        for (int j=0; j<ret.a[i].size(); j++) 
          ret.a[i][j]*= operand.a[i][j]; 
      return ret; 
    } 
    void sort (int i, int j){ 
      std::sort(a.begin()+i, a.begin()+j); 
    } 
    matrix getrow (int r){ 
      matrix ret(1, a[0].size()); 
      ret.a[0] = a[r]; 
      return ret; 
    } 
}; 

 


