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ABSTRACT

With the development of the technology and increafsSseuman dependency on structures,
healthy structures play an important role in peojples and communications. Hence,
structural health monitoring has been attracteohgly in recent decades. Improvement of
measuring instruments made signal processing asweerful tool in structural heath
monitoring. Wavelet transform invention causes aagrevolution in signal processing.
Wavelet transform decomposes a signal into seggoaips based on scaled and translated
basic functions. In this study, a novel methodoldmsed on wavelet transform using
complex Morlet wavelet has been introduced for esystidentification. This process
includes a multivariable constrained optimizatiaolpem for selecting suitable complex
Morlet wavelet. Using selected wavelet, modal patams and flexibility matrix of structure
can be estimated properly. Because of small moddicgpation of higher mode; using
finite number of modes leads to flexibility matsth acceptable accuracy. Since damages
cause change in structural properties, a damagexibdsed on flexibility matrix has been
applied and its performance has been investigatedme structures.
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1. INTRODUCTION

After 2" world war, building construction developed wideisound the world. However,

"Corresponding author: School of Civil Engineeritgn University of Science & Technology, Tehran,
Iran
"E-mail address: ghodrati@iust.ac.ir (G. Ghodrati#m



400 G. Ghodrati Amiri and M. Talebi

lifetime of human built structure is limited. Dila@ation and different internal and external
factors damage and even destruct structures. Forrelason, several studies have been
conducted to detect structural damage.

For health monitoring of structures, several meshbdsed on structural response to
different load conditions has been introduced. €he®thods are based on that damages
cause change in physical properties (mass, stdfia@sl damping) of structure and thus,
change its dynamic characteristic (natural frequemoode shape, damping ratio, ...).
Hence, investigating dynamic parameters of strectan help to find location of damage as
well as its severity [1, 2].

The resonance frequency was used widely as a daimdgpein primary structural health
monitoring (SHM) methods which were based on vibratesponse analysis. Because of
low sensitivity of frequency to damage and its gdemdue to environmental condition,
these methods are not reliable [3-5]. Mode shapesita properties such as mode shape
curvature, modal strain energy and dynamic flexibére properties which substituted for
frequency. Since slight damages have little infeeeon modal parameters in lower modes,
accuracy of these methods depends on the numl@ptdmented modes. Large number of
mode increase the accuracy of methodology, batribt economical [6-8].

Improvement of measuring instruments introduce@othethods in SHM which directly
use vibrational data. These methods are based gmalsprocessing [9-11]. In signal
processing, the part of signal which has all oéitscts is considered. Generally, signals can
be divided into stationary and non-stationary gsoup non-stationary signal, e.g. structural
vibration response, signal behavior varies withetimhis characteristic of signals should be
considered for choosing the appropriate signal ggsing method. Based on signal type,
several signal processing methods such as Fourgmsform (FT), Wavelet Transform
(WT) and Hilbert Transform (HT) has been presefi2d14].

In the remaining of this paper, first a brief dgsiton of WT is introduced. After that a
methodology for finding natural frequencies and moshapes using free vibration
acceleration response of structure based on WTresepted. Using obtained modal
parameter and given mass, flexibility matrix ofusture can be determined. Then, a
Damage Index (ID), based on flexibility matrix,msplemented in order to control structural
state. The performance of the proposed methodabgpecked with obtained data from
numerical model of two laboratory models.

2. WAVELET TRANSFORM

Wavelet Transform (WT) invention causes a greatugm in signal processing. WT is
linear time-frequency method which expresses sigagig a group of scaled and translated
signals. Waveley/(t) , is a mother wave which is centered at specifieetand has a very
short duration and finite energy [15].

[ y@dt=0 (1)
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In a wavelet wher¢ =0 is supposed as center of time, center frequengytime domain
(Utz) and frequency domairﬂ@) variance are obtained using Eqg. (2) to Eq. (8).[1

" ——jwlw(w)l dew 2)
o2 = E_w j )| dt 1)
a, (2)

Wavelet can be real or imaginary. In study of vilmmaal behavior, imaginary wavelets
are more effective because they can determine plnae@mplitude information of signal.
However, real wavelets are appropriate for pealaigm and determining non-uniformity.

2.1 Continuous wavelet transform (CWT)

A wavelet familyg, ((t), is a group of basic functions which obtained frepaled and
translated wavelet.

W, st) = %w(t%) (5)

Whereu ands are translation and scale parameter, respectikelyeach pair ofi ands,

¥,s(t) is a child wavelet. Whers increass, the wavelet dilates in time domain and its
amplitude decreases. Also, increase of scale paeanheads to decrease of the center
frequency and frequency bandwidth.

CWT of f(t) expresses the similarity between signal #a(t) wavelet family for
several values af ands and can be calculated using Eq. (6) [15]:

wiw 9= 19y (Ha ©

Where *, denotes complex conjugatf (U, 9) are coefficients corresponding to tirae

and scales. Properties of CWT is dependent on mother waveélsing Eq. (7), (t) can be
reconstructed based on wavelet coefficient [15].
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Time-Frequency Resolution of WT is function of Hegiberg rectangle witlw, and g,

of mother wavelet. Scaled and translated wavelstuhaenter time and7/s frequency

center and its time and frequency variance s7é and Uf,/S, respectively. Therefore,
resolution of WT changes witf) but the area of rectangle is the same [15].
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Figure 1. Heisenberg rectanglef. for different scale [15]

Frequency resolution has direct relation with sgadeameter, while time resolution
decreases with scale parameter growth. Therefagh frequency signals should be
evaluated with small scale parameters whereas higbales should be used for low
frequency signals.

2.2 Analytical Wavelet Transform

For assessment the time evolution of a signal,yéinal wavelet which can separate phase

and amplitude information of a signal must be uskdis an analytical function if its FT for

negative frequency is zero. In analytical wavelahsform, an analytical wavelet, which is
equal to a sine wave multiplied by a window, isdis€his transform is like Windowed
Fourier Transform (WFT) with varied scale [15].

WHU 9=( fg,)=( f ) & ()

Eq. (9) expresses analytical wavelet transformhicW(,> Is inner product.
Based on [16], forx(t) = A(t) cos@t) with Z(t) = A(t)e“ analytical form, its analytical
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wavelet transform is calculated using Eq. (10).
WHW 9 = (0. () =2 X0 ()=5 | AV (3¢ (10)

Using Taylor series ofA(t) att =u and neglecting of the terms with order higher thanl

because of negligible amount é(t) aroundt =u; the Eq. (10) is simplified into Eq. (11)
[16].

vvf(u,s%T(/xw ¢ X)) éy (O dt% A (gag —17) (11)

Generalized form of Eq. (11), for WT oft) = A(t)cos@ (t)) is obtained using Eq. (12).

Wi(u, $=§ KYd ¢'(y-n) & (12)

3. SYSTEM IDENTIFICATION

3.1 Frequency and damping ratio recognition

Eq. (13) gives free vibration response of a n B@$tem [17]:

X(t) = Ae?™ " cos(2r f t+8 )
N (13)
X(t)=> Ae?™ " cos(2r f t+6 )
i=1
Where X(t) and X(t) are displacement and acceleration free vibratiapaese of
structure, respectively. In this equatiod,or A and § denotes amplitude and phase angle

of motion, respectivelyf, and f, = f,/1-&* are un-damped and damped natural frequency

and ¢ is damping ratio. Mode number is indicated by

Acceleration response is more applicable in sigmalcessing because of its higher
frequency content than displacement. By using cemplorlet wavelet, based on previous
sections, WT of acceleration response is givendy(H).

Wf(u, 9:%2 Aém’ifiu épsz(s;—g)z gzmqya) (14)
i=1
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Complex Morlet wavelet, withf_ center frequency and, frequency bandwidth, is one

of the most common wavelets in signal processi‘ng/.fT]Q >/2, the simplified relation of

Morlet wavelet in time and frequency domain is egsed using Eq. (15) and Eg. (16),
respectively [13].

w(t) - %ej 2t ¢ e_%b (15)
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Figure 2. Morlet wavelet for different &nd f [18]

Fig. 2 shows that frequency resolution has direct iadirect relation withf, and f_,

respectively. Fois = f./ f;, Eq. (17) givesg, and 0 .

-

o, =50, :% 0, =i (17)

Based on Heisenberg principle ¢, >1/2) and Eq. (17)f,, f. should be chosen such

that appropriate time and frequency resolutionsoatained. A solution for this selection is
finding a pair which minimizes the modified Shanremtropy. Eq. (18) presents modified
Shannon entropy [18].

E(f) == dlog(df) , > =1, {=kJ[ J K (18)
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W (u 3)
ZWf (us)

a(h) =% ©)

It is observed thats=g=f/f maximizes g7t(si-%)°. In this situation, the
corresponding mode of has the most participation in wavelet coefficients

Wf(u, $):§ iA'éZHfifiU ézn-fQU+9‘) (20)
Rewriting Eq. (20) and substitutinidor u leads to Eq. (21).
WA (t $):£ ARt G2 = gy O (21)
) 2 1

By applying exponential logarithm and derivativeparately, to the amplitude and phase
of wavelet coefficients and combining obtained e, natural frequencies and damping
ratios are achieved [13].

InB (1)) = 27, {t+ m(@ A) - SEAOD — o ¢ (22)
d(‘g(t» = 27tf, = 271t \[1- &7 ®)
| \/ Ain(B)y: , (900 /27, @)

‘= (7d '“(d? )y fort ®

For decomposing two closely spaced frequency coemonf,,f.,;, assuming

f.=(f+f,)/2andAf,,, =1, —f, Eq. (27) can be obtained from Eq. (17).
02 20, i+l
fiia=( )\/—f (26)
> 2a i+l
> ( )Af 9)

i+l

In Eq. (26) and Eq. (27)¢ is a parameter which defines the allowable oveofafwo
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adjacent Gaussian windows of Morlet wavelet. Thessgmlity of complete modal
separation is in direct relation witlr. Previous studies show that=2 is an optimum
parameter [13].

rl r1
Figure 3. Schematic demonstration of effecttobn mode seperation [19]

The other factor which affects wavelet coefficiemdsend-effect. Fig. 4 shows that
despite wavelet focusing at a specific time andeasgnting the frequency content of signal

in its neighborhood, at both beginning and endgfa, the time window may extend to out
of signal domain. In order to eliminate the enceeff a specific length of signalyT, ,

should be neglected [13, 19].
f_Jf,
AT, =f9, = ﬁf—°7 (28)
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Figure 4. Schematic demonstration of end-effect [19
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Researches show that f@f >4, the end-effects are negligible. &T, is defined such
that AT < yT, the Eq.(29) should be satisfied. In this equaliaa the length of signal [13].

2y
f f.<(—)Tf, 29
( ;,) (29)

As a result, findingf, andf, is constrained optimization problem in which maetif
Shannon entropy should be minimized such faandf, situate in the following range.

(2a)fA‘f'i_+1 < Ji.f. < (%V)Tfi (30)

i+l

Among computational intelligent techniques like @&gn Algorithm (GA), Particle
Swarm Optimization (PSO), Simulated Annealing (3A3 Neural Network (NN), GA is a
powerful tool for solving constrained multi varialjpproblems [20].

GA is a population based probabilistic techniquesimlving complex problems through
the application of the principles of evolutionaiglbgy which is similar to Darwin’s theory.
In this method, participation of a member is présérby a fitness value. New and more
evolutionary-fit individual solutions are producetliring a cycle of generations. This
process continues until reaching optimum solutiij.[GA includes following steps:

Initialization: At first, a population of individuas selected randomly.

Crossover: Genetic information of the populatiosasnbined by cutting and exchanging
their chromosomes. This operation increases thengiat for joining successful members.

Mutation: In this step, structure of some individehanges randomly. This operation
prevents the population from trapping GA in loaallsions.

Selection: For every generation, a selection ofttoportion of the existing population is
chosen to breed a new population

Termination: Previous steps are repeated untilpghgypcriteria is satisfied.

3.2 Mode shapes determination

k-th mode shape can be obtained from WT of recorsigdals in all DOFs for k-th
frequency. To achieve this purpose, j-th componait k-th complex mode
shapeg,, =r, +s,i, is calculated using Eq.(31) by selecting a refeeesensor, r [22, 23].

Wi (u5)

P9 =W, (w.3)

(31)
WhereWf, (u, ) andWf, (u, s ) are wavelet coefficients of j-th and r-th DOF petively.

Since #; is not constant in signal duration, actual anoneded real mode shapes are different.
Eq. (32), presents an optimum estimation of k-tldena order to decrease this mismatch.
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YaU.s)qus) Y alu 9 .mu 9

g =+ Sy =13 (32)

| qu(ui,sa) Zqz(u, s)

Where P, (U;,S;) and P, (U;,S;) are real and imaginary part of wavelet coefficients
andn is the signal duration [22, 23].

3.3 Flexibility matrix estimation

Each column of flexibility matrix is the displacenteof all DOF due to unit load on the
corresponding DOF of column. Therefore, the fldkipimatrix can be obtained by
imposing unit load on each DOF and measuring teplatement of all DOFs [24]. This
process would be difficult and impossible for coexpstructures which include high DOF.
If mode shapes are normalized such tpa¥l = , flexibility matrix of structure can be

obtained using Eq.(33) [25].
a4 1
F=g\"¢ = E_l—g aq (33)

WhereF is flexibility matrix, @=[@, @,,...,®,] is normalized mode shape matrig, is i-
th mass normalized mod shap®, is diagonal matrix of Eigen values ands the DOF
number. Because of inverse relation between fleilbnatrix and mode order, only limited
number of modes leads to a matrix with acceptabturacy. So, with frequencies and
modes shapes which were obtained from previousosactthe flexibility matrix can be
calculated easily.

3.4 Structural assessment using flexibility matrix

Structural damage causes change in flexibility mafhus, comparing flexibility matrix
with its primary condition and health state wou&ldn appropriate approach for recognition
of location and severity of damage. In this stumlypamage Index (DI) based on flexibility
matrix is implemented.

n

DI, ZIOOX(Z[ ¢in _fijD )/fin ]0.5] (34)

=1

Where DI, is damage index in i-th DOF arf¢’ andf;” are i-th row and j-th column of
flexibility matrix in health and damage state, spvely.
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4. VERIFICATION OF PROPOSED METHODOLOGY

For verification of proposed method, numerical moafetwo laboratory model has been
investigated. The first one (Fig. 5) is a 3-DOFp thmensional laboratory model [26]. This
model is a 3-story moment frame which presentsilibg with one-eighth scale. In this
model 10mmx10mm and 12mmx12mm steel boxes are fasdzeams and columns and
each story is considered as a 10-kg mass. Figowssthree first mode shapes of this model.
For data acquisition, the acceleration responseimodel to an initial displacement has
been recorded. Two structural damage scenarios lbeee considered for this model. The
first scenario includes 20% stiffness reductiorthia middle 10cm of third story columns
and the second one is 20% stiffness reductionemrtiddle 10cm of first story columns.

1000 mm

DOF 3

1000 mm

500 mm

800 mm

DOF 2

500 mm

DOF 1

750 mm

Figure 5. 3-DOF Laboratory Model

f=214Hz f=824Hz f=1341Hz

Figure 6. Three first mode shape of 3-DOF model
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Table 1: Natural frequencies of 3-DOF models in Hz
Laboratory  Numerical Estimated  Estimated  Estimated

(Health) (Health) (Health)  (1*scenario) (1* scenario)

1°' mode 2.14 2.31 2.318 2.328 2.35
2" mode 8.24 8.11 8.059 8.057 8.045
3% mode 13.41 14.73 13.495 12.896 13.061
&0 60

1st scenatio 2nd scenatio
30 30
40 40

=30 '5'”3@
20 20
N BN “' l
0 : - 0
1 2 3
DOF Number DDFNumber

Figure 7. DI in different DOFs of 3-DOF model

The second considered model is a laboratory stégdd benchmark (Fig. 8) [27, 28].
Deck of this model includes two 18-ft longitudireald seven 3-ft transvers beam which are
made from S3x5.7 connected together with rigid eation. The deck is supported with six
3.5ft W12x26 columns. The connections between deckcolumns are hinge. Fig. 9 shows
three first modes of benchmark. Acceleration respoof the model to a random vertical
vibration has been recorded in location which igvatd in Fig. 10. It should be noted that
the mass of bridge is considered to be concentratesensor locations. Releasing the
rotational DOF of S11 and S22 has been considesethe first and second structural
damage scenario, respectively.

Figure 8. Steel bidge benchmark [28]
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Figure 9. Location of sensors and DOFs

22451z

Figure 10. Three fisrt mode shapes of bridge beackhm

Table 2: Natural frequencies bridge benchmark in Hz
Estimated Estimated

Laboratory  Numerical Estimated

(Health) (Health) (Health)  (1%scenario) (1% scenario)
1* mode 22.37 22.45 23.61 23.61 23.61
2" mode 27.01 27.5 26.95 26.93 26.93
3 mode 33.38 33.55 34.66 34.65 34.65
15t senario

DOF Number
DEOF Number

DOF Number DOF Number

Figure 11. DI in different DOFs of bridge benchmark

5. CONCLUSION

In this paper, a methodology, based on analytiGlelet transform using complex Morlet
wavelet has been introduced for determining natdrafjuencies, mode shapes and
flexibility matrix of structure. As mentioned be&rMorlet wavelet is a time domain
function with two unknown parameterd, (f ). Selection of these two parameters is a
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constrained optimization problem. Studies show thai<f <1, more acceptable results
can be obtained. In this study, GA has been apftietinding f,, f, and it is observed that

by considering third DOF as references sensor3481l) would be optimum answer in 3-
DOF model. Also, (1651.37, 0.99) would be optimums\aer in bridge benchmark if S12 is
selected as references sensor.

Tables 1 and 2 show experimental, numerical anchattd values of natural frequencies
in 3-DOF model and bridge benchmark, respectivehe results show the acceptable level
of accuracy in frequency estimation. Also the rssshow that minor damages have little
effect on lower natural frequency modes and thésmges give no information about the
location of damage.

Figs. 7 and 11 indicate the sensitivity of propodathage index to location and severity
of damage. Proposed DI increases with increasarobde severity.

For future studies, investigating the effects dérences location, type and location of
imposed loads and studying other kinds of strustared scenarios are suggested.
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