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ABSTRACT 
 

The Isogeometric Analysis (IA) is utilized for structural topology optimization considering 

minimization of weight and local stress constraints. For this purpose, material density of the 

structure is assumed as a continuous function throughout the design domain and 

approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control 

points of the density surface are considered as design variables of the optimization problem 

that can change the topology during the optimization process. For initial design, weight and 

stresses of the structure are obtained based on full material density over the design domain. 

The Method of Moving Asymptotes (MMA) is employed for optimization algorithm. 

Derivatives of the objective function and constraints with respect to the design variables are 

determined through a direct sensitivity analysis. In order to avoid singularity a relaxation 

technique is used for calculating stress constraints. A few examples are presented to 

demonstrate the performance of the method. It is shown that using the IA method and an 

appropriate stress relaxation technique can lead to reasonable optimum layouts. 
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1. INTRODUCTION 
 

In general, structural optimization aims to find the best structure so that applied loads are 

sustained and transferred to specified supports in an appropriate way. To reach the point, 

there are three types of structural optimization named topology, shape and size 
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optimizations. In topology optimization approach, optimum layout that means number, 

location and size of the holes in a structure, is sought. Subsequently, shape of boundaries of 

the structure and size or thickness of members are optimized through shape and size 

optimization methods, respectively [1,2]. 

During the last two decades topology optimization methods have been improved by many 

researchers. In pioneering procedures on structural topology optimization, introduced by 

BendsØe and Kikuchi, the homogenization theory is used to parameterize the problem [3]. 

For the sake of simplicity, the Solid Isotropic Materials with Penalization (SIMP) approach 

was later on developed where the need for homogenization process is eliminated [4]. 

To solve the topology optimization problem several methods such as optimality criteria 

(OC) methods [4,5], the approximation methods [6-8], CONLIN [9] and the Method of 

Moving Asymptotes (MMA) [10], even more heuristic methods such as genetic algorithm 

[11-13] and Ant colony [14] are employed. Also, less mathematically rigorous methods such 

as the evolutionary structural optimization method (ESO) can be named [15]. Moreover, 

several different approaches are devised that use the Level Set methods (LS) [16-19]. As an 

optimization engine the MMA method is used here which has been proven to be amongst the 

most effective to solve the topology optimization problems.  

In this research, the optimization problem aims to minimize weight of a structure subject 

to stress constraints. There are several researches in literature carried out to improve the 

performance of the minimum weight problem including accuracy and computational costs 

[23-31]. In these methods, relative density of finite elements of discretized domain are 

considered as design variables and stress constraints are calculated for intermediate node of 

each element, called local stress constraints [20-22]. In addition, in order to avoid 

singularity, due to increasing stress in less material areas, the stress relaxation technique is 

usually employed [32-36]. 

The IA method has been developed by Hughes and his co-workers in recent years [37-

41]. This method is a logical extension and generalization of the classical finite element 

method and has many features in common with it. However, it is more geometrically based 

and takes inspiration from Computer Aided Geometry Design (CAGD). A primary goal of 

IA is to be geometrically precise no matter how coarse the discretization beside 

simplification of mesh refinement by eliminating the need for communication with the CAD 

geometry once the initial model is constructed. The main idea of the method is to use the 

same basis functions which are employed for geometry description for approximation and 

interpolation of the unknown field variables as well. Due to some interesting properties of 

B-splines and NURBS, they are perfect candidates for this purpose. 

The IA method has been utilized for topology optimization of structures instead of the FE 

approach; where the NURBS basis functions have also been used for approximating the 

material density function [42,43]. The method presented in this article falls within the 

category of nodal based methods which uses control points instead of nodal points and 

employs the IA approach. The material distribution function is approximated over the whole 

domain and is restricted to be within zero (for empty areas or voids) and one (for solid areas) 

interval. Also, similar to the SIMP method a penalty exponent is implemented to suppress 

formation of undesirable porous media inside the optimal layout [42,43]. 

In Section 2, the IA method for plane stress problems is briefly explained. Section 3 is 

devoted to the concise definition of the topology optimization problem. In Section 4, 
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sensitivity analysis is carried out using the direct analytical method. Three examples are 

presented in section 5 to demonstrate the performance of the method. Finally, the results are 

discussed in the last section.  

 

 

2. ISOGEOMETRIC ANALYSIS 
 

The procedure of the IA for elasticity problems is comprised of the following steps. First, 

the geometry of the domain of interest is constructed by using the NURBS technology. 

Depending on the complexity of the geometry and topology of the problem, multiple 

NURBS patches can be used in this stage. These patches may be thought of as kind of macro 

elements in the finite element method and can be assembled in the same fashion [37]. In the 

next step, borrowing the ideas from isoparametric finite elements, the geometry as well as 

the displacement components are approximated by making use of the NURBS basis 

functions. Then, following a standard procedure like the weighted residuals or the 

variational methods, or similarly using the principle of virtual work, the approximated 

quantities are substituted into the obtained relations. This will result in a system of linear 

equations to be solved. One should note that following this procedure the control variables 

are evaluated and to obtain the displacements at certain points a kind of post processing is 

required. A brief introduction to the construction of NURBS surfaces followed by derivation 

of IA formulation for plane elasticity problems are the subjects of the next two subsections. 

 

2.1 Surface and volume definition by NURBS 

A NURBS surface is parametrically constructed as [44]: 
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where Pi,j are (n⨯m) control points, ωi,j are the associated weights and Ni,p(ξ) and Nj,q(η) 

are the normalized B-splines basis functions of degree p and q respectively. The i-th B-

spline basis function of degree p, denoted by Ni,p(ξ), is defined recursively as: 
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(2) 

 

where ξ={ξ0, ξ1,…,ξr} is the knot vector and ξi are a non-decreasing sequence of real 

numbers, which are called knots. The knot vector η={η0, η1,…,ηs} is employed to define the 

Nj,q(η) basis functions for other direction. The interval [ξ0,ξr]⨯[η0,ηs] forms a patch [37]. A 

knot vector, for instance in ξ direction, is called open if the first and last knots have a 

multiplicity of p+1. In this case, the number of knots is equal to r=n+p. Also, the interval 

[ξi,ξi+1) is called a knot span where at most p+1 of the basis functions Ni,p(ξ) are non-zero 
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which are Ni-p,p(ξ), …, Ni,p(ξ). For some details Reference [44] can be consulted.  

 

2.2 Numerical formulation for plane elasticity problems  

In the IA method, the domain of problem might be divided into subdomains or patches so 

that B-spline or NURBS parametric space is local to these patches. A patch is like an 

element in the finite element method and the approximation of unknown function can be 

written over a patch. Therefore, the global coefficient matrix, which is similar to the 

stiffness matrix in elasticity problems, can be constructed by employing the conventional 

assembling which is used in the finite element method.  

By using the NURBS basis functions for a patch p, the approximated displacement 

functions up=[u,v] can be written as: 
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where Ri,j(ξ,η) is the rational term in Equation (1). It should be noted that the geometry is 

also approximated by B-spline basis functions as: 
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By using the local support property of NURBS basis functions, the above relation can be 

summarized as it follows in any given (ξ,η) [ξi,ξi+1)⨯[ηj,ηj+1). 
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The strain-displacement matrix B can be constructed from the following fundamental 

equations: 

 
  ε Du ε BU  (7) 

 

where D is the differential operation matrix. Following a standard approach for the 

derivation of the finite elements formulation, the matrix of coefficients can easily be 

obtained. For example, by implementing the virtual displacement method with existence of 

body forces b and traction forces t we can write: 
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where Vp and Γp are the volume and the boundary of patch p. 

Now, by substituting δε=BδU from Equation (7) and the constitutive equation σ=Cε, in 

Equation (8) and by dropping the non-zero coefficient of δUT, the matrix of coefficients can 

be obtained as: 

 

p

p T
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dV K B CB

 
(9) 

 

 

3. TOPOLOGY OPTIMIZATION PROBLEM 
 

In this paper, the topology optimization problem is how to distribute the minimum material 

to form a structure in which the stresses are less than a certain allowable stress. Spatial 

material distribution can be described as a density function ϕ(x) for every point x of the 

design domain [2], which is considered between zero and one for empty and solid areas, 

respectively. The density function can also be approximated using the NURBS basis 

functions as follows: 
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where ϕ(ξ,η) is the density function and Φp
i,j are control points of the density function 

created by NURBS in patch p that can be assumed as design variables of the optimization 

problem. It is noted that the same basis functions are used for approximating geometry, 

displacements and the density function. Inspired by the SIMP method, in order to prevent 

the porous area, the density function is penalized for evaluating the artificial elasticity 

matrix. Therefore: 
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where C is the elasticity matrix, μ is penalization exponent that is usually considered more 

than 3 [45]. 

As it mentioned before, the optimization problem aims to minimize the total weight of 

the structure (W) that can be obtained as below: 
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Also, the von Mises stresses is employed as stress constraints which is defined in 2D 

problems as follows: 
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where σx and σy are the normal stresses and τxy is the shear stress.  

It is worth noting that generally when material is removed in some areas of the domain 

during the optimization process, the stress constraints might be violated and prevents 

removing all materials from the areas. Sved and Ginos in 1968 found that stress constraints 

are not satisfied as the bar area goes to zero in a truss optimization problem and the bar can 

thus not be removed (known as singularity) [32]. This singularity can also emerge in two 

and three dimensional continuum problems where non-disappearing stresses remain as the 

design variables go towards zero. In other words, a region with low design variable values 

can still have strain which give rise to stress with a nonzero and sometimes remarkably high 

value while it actually should be zero as it represents a hole. The singularity problem has 

been discussed in several research papers [32-34]. A remedy to avoid the problem is to use 

an ε-relaxation approach as suggested by Cheng and Guo in 1997 [35]. According to this 

approach, main stress constraints are replaced with relaxed stress constraints so that for any 

ε>0, the ε-relaxed problem is characterized by a design space that is not any longer 

degenerate and optimization problem is converged better to a solution [2].  

Eventually, the discretized optimization problem considering stress relaxation approach 

can be written as below [46], 
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(14) 

 

where σall and Φmin are the allowable stress value and the lower bound of design variables, 

respectively. The expression that is multiplied by the von Mises stress level, is called 

relaxation coefficient wherein ε is considered as the small positive value [46]. Also, the 

function value of ϕ is calculated in the stress point of each constraint. 

From Equations (9) and (11) the coefficient matrix K can be written as follows: 
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where np is the number of patches in the design domain which are assembled similar to the 

conventional finite element method. 

 

 

4. SENSITIVITY ANALYSIS 
 

In order to solve structural optimization problems by generating a sequence of explicit first 

order approximations, such as MMA [10], one needs to differentiate the objective function 

and all constraint functions with respect to the design variables. The procedure to obtain 
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these derivatives is called sensitivity analysis. There are two main groups of methods: 

numerical methods, and analytical methods. One may also consider hybrids of methods from 

these two groups: so-called semi-analytical methods. Also, there are two different analytical 

methods: the so-called direct and adjoint methods [1,47-49]. In this research, direct 

analytical method is utilized for calculating derivatives of the local stress constraints. Since 

relaxation coefficient depends on design variables, the chain rule needs to be used in order to 

differentiate the stress constraints. Therefore: 
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where A denotes the relaxation coefficient. Using Equation (13), derivatives of von Mises 

stresses with respect to the design variables, which are considered as the third component of 

the density surface control points' coordination, is calculated as below: 
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Differentiating both sides of the constitutive equation (7) gives derivatives of the stress 

components as: 
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Also, differentiating the equilibrium (Ku=f) obtains: 
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In the absence of body forces, the right-hand side of Equation (19) will be zero, therefore: 
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Since Equation (20) has the same form as the equilibrium, the right-hand side of (20) is 

often called pseudo-load [1,47-49]. In order to obtain the pseudo-load vector, derivatives of 

global coefficient matrix K with respect to design variables can be derived as below: 
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Substituting (21) into (20) and solving the obtained equation, derivatives of 

displacements with respect to the design variables are calculated and plugged into (18) to 

find derivatives of stress vector (18) and, eventually, the von Mises stress derivatives in 

(17). 

For the sake of completeness in terms of stress constraints differentiation in (16), 

derivatives of the relaxation coefficient after some manipulations are obtained as follows: 
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Finally, derivatives of the objective function, i.e. weight of structure in Equation (12), 

with respect to the design variables can be written as follows: 
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5. NUMERICAL EXAMPLES 
 

In this section, three examples are presented to demonstrate performance and accuracy of the 

proposed algorithm as well as the sensitivity analysis in weight minimization problems 

under stress constraints. 

 

5.1 Example 1 

A short cantilever beam subjected to a point load at the bottom corner is considered, as 

shown in Figure 1. The beam has been modeled with one patch and 1066 control points. The 

modulus of elasticity and the poisson’s ratio are considered as 1500 kgf/cm2 and 0.3, 

respectively. Also, the exponent μ=3 penalizes the density function to prevent generating 

gray regions. Dimensions of the design domain are assumed as L=8 cm and H=5 cm. In 

addition, the point load magnitude is taken as P=100kgf. In all of the discretizations, equally 

spaced open knot vectors are used for each direction. The considered knot vectors are given 

in Table 1. The ε parameter and the allowable stress are considered to be 0.1 and 570 

kgf/cm2, respectively. Stress constraints of the problem are worked out in 625 uniformly 

distributed stress points. 

 

 
Figure 1. Short cantilever beam 
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Table 1: Considered knot vectors for each patch (Examples 1 & 2) 

No. of Control Points The employed equally spaced knot vectors 

1066 

187 
Ξ={0,0,0,0.025641,…,0.974358,1,1,1} for p=2 

H={0,0,0,0.041666,…,0.958318,1,1,1} for q=2 
Ξ={0,0,0,0.066,…,0.933,1,1,1} for p=2 

H={0,0,0,0.111,…,0.889,1,1,1} for q=2 

 

The obtained topology is depicted in Figure 2(a). For the sake of comparison, the 

optimum layout using the level set method and the Finite Cell Method (FCM) from 

Reference [50] is shown in Figure 2(b). The design domain is partitioned into 80 × 50 cells. 

As it is shown the layouts are approximately the same, however, wiggly boundaries in the 

proposed topology are emerged due to the control points’ distances. In other words, using 

more control points can lead to have more non-gray areas and smoother boundaries.  

The stress contour plot is depicted in Figure 2(c) where the stresses have been kept less 

than the allowable stress by the algorithm. Also, the iteration history presented in Figure 

2(d) expresses appropriate performance of MMA in optimization problems with high 

number of constraints. 

 

 
(a)            (b) 

 
(c)             (d) 

Figure 2. short cantilever beam: (a) optimum layout in present work; (b) optimum layout in 

Reference [50] with FCM/LS method; (c) stress contour plot; (d) iteration history for objective 

function 

 

5.2 Example 2 

In this example, the ability of the present work in capturing the optimum topology and the 

effect of number of control points and stress constraints is studied. For this purpose, a couple 
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of control nets with 187 and 1066 points are used for discretizing the design domain as well 

as the material density function. 121 and 625 stress points are uniformly considered for 

calculating the Von Mises stress constraints, respectively, for both assumed discretizations. 

The geometry, loading and boundary conditions are illustrated in Figure 3. The allowable 

stress is taken 1620 kgf/cm2. All other parameters are assumed to be the same as previous 

example. 

 

 
Figure 3.short cantilever beam 

 

The optimum topologies are illustrated in Figures 4(a) and 4(b) for 187 and 1066 control 

points, respectively. Also, their corresponding stresses plot are depicted in Figures 4(c) and 

4(d) for 121 and 625 stress constraints, respectively. As it is observed, by increasing the 

number of control points layouts with less intermediate material densities, i.e. gray areas, are 

obtained. According to the iteration histories (Figures 4(e) and 4(f)), the optimum weight of 

the structure is obtained 5.63 kgf and 4.80 kgf for 187 and 1066 control points, respectively. 

Results show that elimination of gray areas due to increase of the control points can lead to 

lighter structure. 

 

 
(a)            (b) 

 
(c)            (d) 
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(e)           (f) 

Figure 4. short cantilever beam: (a), (b) optimum layouts; (c), (d) stress contour plots; (e), (f) 

iteration history for objective functions of using 187 and 1066 control points. 

 

5.3 Example 3 

An L-shaped structure is studied in this example. Figure 5 shows the geometry, loading and 

boundary conditions of the problem. Other parameters is considered as E=100 Pa; ν=0.3; 

L=1.0 m; P=1.0 N; μ=3; ε=0.1. The design domain is created by using 3 patches and 1701 

control points. The used open knot vectors are given in Table 2. Stress constraints are 

calculated in 324 uniformly distributed stress points in each patch and the stress limitation is 

considered to be 100 kgf/cm2. 

 

 
Figure 5. L-shaped structure 

 
Table 2: Considered knot vectors for each patch 

No. of Control Points The employed equally spaced knot vectors 
1 Ξ=H={0,0,0,0.052631,…,0.947358,1,1,1},p=q=2 

2 Ξ={0,0,0,0.052631,…,0.947358,1,1,1} for  p=2 

H={0,0,0,0.034482,…,0.965496,1,1,1} for  q=2 
3 Ξ={0,0,0,0.034482,…,0.965496,1,1,1} for  p=2 

H={0,0,0,0.052631,…,0.947358,1,1,1} for  q=2 
 

Figures 6(a) and 6(c) demonstrate the obtained topology and stress contour plot 

considering weight minimization under stress constraints. The iteration history is depicted in 

Figure 6(d). The minimum weight is obtained 0.128 kgf that is %20 of the initial weight of 
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the structure which is 0.64 kgf.  

On the other hand, the topology optimization has been carried out considering 

minimization of the mean compliance with a certain amount of materials which gives the 

stiffest possible structure. For the sake of comparison, the volume fraction is considered to 

be 20%. The final topology is shown in Figure 6(b). It is observed that the weight 

minimization approach subject to local stress constraints leads to a more rounded boundary 

on the corner and avoid stress concentration. 

 

 
(a)          (b) 

 
(c)          (d) 

Figure 6. L-shaped structure: (a) optimum topology for weight minimization formulation; (b) 

optimum topology for traditional formulation; (c) stress contour plot (d) iteration history for 

objective function 

 

 

6. CONCLUSION 
 

In this research, the IA method is utilized for structural topology optimization considering 

weight minimization under local stress constraints. The sensitivity analysis is carried out 

based on the direct differentiation and the outcomes are used in the gradient-based MMA 

algorithm. The stress relaxation technique is also used in definition of the optimization 

problem in order to avoid the singularity problem. Performance of the employed algorithm 

and the direct sensitivity analysis is shown through the numerical examples. The results are 

compared with outcomes from other methods of topology optimization and show similar 

topologies. Increasing number of control points leads to elimination of gray areas as well as 
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smoother boundaries. Furthermore, selection of an appropriate relaxation parameter causes 

all the constraints to be satisfied. In the third numerical example, comparing the minimum 

weight formulation with the common mean compliance approach, different optimum layouts 

are obtained and more reasonable layout without stress concentration is formed when 

minimum weight formulation is employed. 

 

Acknowledgement: The Authors would like to thank Professor Krister Svanberg for 

providing the MMA code. 

 

 

REFERENCES 
 

1. Christensen PW, Klarbring A. An Introduction to Structural Optimization, Springer, 

Sweden, 2009. 

2. Bendsøe MP, Sigmund O. Topology Optimization; Theory, Methods and Applications, 

Springer, Germany, 2003. 

3. Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a 

homogenization method, Comput Method Appl Mech 1988; 71: 197-224. 

4. Rozvany GIN. Structural Design via Optimality Criteria, Kluwer Academic Publishers, 

Dordrecht, 1989. 

5. Rozvany GIN, Zhou M. The COC algorithm, Part I: Cross section optimization or 

sizing, Comp Meth Appl Mech Eng 1991; 89: 281-308. 

6. Schmit LA, Farsi B. Some approximation concepts for structural synthesis, AIAA J 

1974; 12(5): 692-9. 

7. Schmit LA, Miura H. Approximation Concepts for Efficient Structural Synthesis, NASA 

CR-2552, 1976. 

8. Vanderplaats GN, Salajegheh E. A new approximation method for stress constraints in 

structural synthesis, AIAA J 1989; 27(3): 352-8. 

9. Fleury C. CONLIN: An efficient dual optimizer based on convex approximation 

concepts, Struct Multidisc Optim 1989; 1: 81-9.  

10. Svanberg K. The method of moving asymptotes – a new method for structural 

optimization, Int J Numer Meth Eng 1987; 24: 359-73. 

11. Kane C, Schoenauer M. Topological optimum design using genetic algorithms, Special 

Issue on Optimum Design, Contr Cybern 1996; 25(5): 1059-88. 

12. Fanjoy D, Crossley W. Using a genetic algorithm to design beam corss-sectional 

topology for bending, torsion, and combined loading, Structural Dynamics and Material 

Conference and Exhibit, AIAA, Atlanta, GA, 2000, pp. 1-9. 

13. Jakiela MJ, Chapman C, Duda J, Adewuya A, Saitou K. Continuum structural topology 

design with genetic algorithms, Comput Meth Appl Mech Eng 2000; 186: 339-56. 

14. Kaveh A, Hassani B, Shojaee S, Tavakkoli SM. Structural topology optimization using 

ant colony methodology. Eng Struct 2008; 30(9): 2559-65. 

15. Xie YM, Steven GP. A simple evolutionary procedure for structural optimization, 

Comput Struct 1993; 49(5): 885-96. 

16. Sethian J, Wiegmann A. Structural boundary design via level set and immersed 

interface methods, J Comput Phys 2000; 163: 489-528. 



H.S. Kazemi, S.M. Tavakkoli and R. Naderi 

 

 

316 

17. Wang MY, Wang X, Guo D. A level-set method for structural topology optimization, 

Comput Meth Appl Mech Eng 2003; 192: 227-46. 

18. Allaire G, Jouve F, Toader AM. Structural optimization using sensitivity analysis and a 

level-set method, J Comput Phys 2004; 194:363 -93. 

19. Belytschko T, Xiao SP, Parimi C. Topology optimization with implicit functions and 

regularization, Int J Numer Meth Eng 2003; 57: 1177-96. 

20. Duysinx P, Bendsøe MP. Topology optimization of continuum structures with local 

stress constraints, Int J Numer Meth Eng 1988; 43: 1453-78. 

21. Duysinx P, Sigmund O. New developments in handling stress constraints in optimal 

material distributions, 7th Symposium on Multidisciplinary Analysis and Optimization, 

AIAA/USAF/ NASA/ISSMO, 1998, pp. 1501-9. 

22. Duysinx P. Topology optimization with different stress limits in tension and 

compression, Third World Congress of Structural and Multidisciplinary Optimization, 

University of New York at Buffalo, 2000. 

23. Paris J, Navarrina F, Colominas I, Casteleiro M. Topology optimization of continuum 

structures with local and global stress constraints, Struct Multidisc Optim 2009; 39: 419-

37. 

24. Paris J, Navarrina F, Colominas I, Casteleiro M. Block aggregation of stress constraints 

in topology optimization of structures, Adv Eng Softw 2010; 41: 433-41. 

25. Le C, Norato J, Bruns T, Ha C, Tortorelli D. Stress-based topology optimization for 

continua, Struct Multidisc Optim 2010; 41: 605-20. 

26. Holmberg E, Torstenfelt B, Klarbring A. Stress constrained topology optimization, 

Struct Multidisc Optim 2013; 48: 33-47. 

27. Paris J, Colominas I, Navarrina F, Casteleiro M. Parallel computing in topology 

optimization of structures with stress constraints, Computers and Structures 2013; 125: 

62-73. 

28. Luo Y, Wang MY, Kang Z. An enhanced aggregation method for topology optimization 

with local stress constraints, Comput Meth Appl Mech Eng 2013; 254: 31-41. 

29. Huan-Huan G, Ji-Hong Z, Wei-Hong Z, Ying Z. An improved adaptive constraint 

aggregation for integrated layout and topology optimization, Comput Meth Appl Mech 

Eng 2015; 289: 387-408. 

30. Kennedy GJ. Strategies for adaptive optimization with aggregation constraints using 

interior-point methods, Comput Struct 2015; 153: 217-29. 

31. Paris J, Navarrina F, Colominas I, Casteleiro M. Improvements in the treatment of stress 

constraints in structural topology optimization problems, J Comput Appl Math 2010; 

234: 2231-8. 

32. Sved G, Ginos Z. Structural optimization under multiple loading, Int J Mech Sci 1968; 

10: 803-5. 

33. Kirsch U. On singular topologies in optimum structural design, Struct Multidisc Optim 

1990; 2: 133-42. 

34. Rozvany G, Birker T. On singular topologies in exact layout optimization, Struct 

Multidisc Optim 1994; 8: 228-35. 

35. Guo X, Cheng G, Yamazaki K. A new approach for the solution of singular optima in 

truss topology optimization with stress and local buckling constraints, Struct Multidisc 

Optim 2001; 22: 364-73. 



ISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES … 

 

 

317 

36. Cheng G, Guo X. ε-relaxed approach in structural topology optimization, Struct 

Multidisc Optim 1997; 13: 258-66. 

37. Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, 

NURBS, exact geometry and mesh refinement, Comput Meth Appl Mech Eng 2005; 

194: 4135-95. 

38. Bazilevs Y, Beirao Da Veiga L, Cottrell JA, Hughes TJR, Sangalli G. Isogeometric 

analysis: approximation, stability and error estimates for h-refined meshes, Math Mod 

Meth Appl Sci 2006; 16: 1031-90. 

39. Bazilevs Y, Calo VM, Cottrell J, Hughes TJR, Reali A, Scovazzi G. 

Variationalmultiscale residual-based turbulence modeling for large eddy simulation of 

incompressible flows, Comput Meth Appl Mech Eng 2007; 197: 173-201. 

40. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR. Isogeometric fluid structure interaction 

analysis with applications to arterial blood flow, Comput Meth Appl Mech Eng 2006; 

38: 310-22. 

41. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR. Isogeometric analysis of structural 

vibrations, Comput Meth Appl Mech Eng 2006; 195: 5257-96. 

42. Hassani B, Khanzadi M, Tavakkoli SM. An isogeometrical approach to structural 

topology optimization by optimality criteria, Struct Multidisc Optim 2012; 45: 223-33. 

43. Tavakkoli SM, Hassani B, Ghasemnejad H. Isogeometric topology optimization of 

structures by using MMA, Int J Optim Civ Eng 2013; 3: 313-26. 

44. Piegl L, Tiller W. The NURBS Book, Springer, 2nd edition, Germany, 1995. 

45. Hassani B, Hinton E. Homogenization and Structural Topology Optimization: Theory, 

Practice and Software, Springer, London, 1999. 

46. Pereira JT, Fancello EA, Barcellos CS. Topology optimization of continuum structures 

with material failure constraints, Struct Multidisc Optim 2004; 26: 50-66. 

47. Haftka RT, Gurdal Z. Elements of Structural Optimization, Kluwer, 3rd revised and 

expanded edition, Dordrecht, 1992. 

48. Choi KK, Kim NH. Structural Sensitivity Analysis and Optimization 1—Linear Systems, 

Springer, Berlin, 2005. 

49. Choi KK, Kim NH. Structural Sensitivity Analysis and Optimization 2—Nonlinear 

Systems and Applications, Springer, Berlin, 2005. 

50. Cai S, Zhang W. Stress constrained topology optimization with free-form design 

domains, Comput Meth Appl Mech Eng 2015; 289: 267-90. 


