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ABSTRACT 
 

In this paper, MATLAB code for a recently developed meta-heuristic methodology, the 

vibrating particles system (VPS) algorithm, is presented. The VPS is a population-based 

algorithm which simulates a free vibration of single degree of freedom systems with viscous 

damping. The particles gradually approach to their equilibrium positions that are achieved 

from current population and historically best position. Two truss towers with 942 and 2386 

elements are examined for the validity of the present algorithm; however, the performance 

VPS has already been proven through truss and frame design optimization problems. 
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1. INTRODUCTION 
 

Structural optimization can be classified as follows: 1. obtaining optimal size of structural 

members (sizing optimization); 2. finding the optimal form for the structure (shape 

optimization); 3. achieving optimal size and connectivity between structural members 

(topology optimization). Sizing optimization problems are very popular design problems and 

can be found frequently in papers [1-5].  

Recent developments in meta-heuristic optimization algorithms have made these methods 

suitable even for complicated design problems and they have been widely employed for 

obtaining the optimal solutions of engineering design problems. Some of the most recent 

algorithms in this field are: teaching–learning-based optimization (TLBO) [6], water cycle 

algorithm (WCA) [7], colliding bodies optimization (CBO) [8], grey wolf optimizer (GWO) 
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[9], ant lion optimizer (ALO) [10], tug of war optimization (TWO) [11], whale optimization 

algorithm (WOA) [12] and water evaporation optimization (WEO) [13]. Further advances 

and applications of metaheuristics can be found in Kaveh [14,15]. 

In this study, a new nature-inspired meta-heuristic optimization algorithm, called 

vibrating particles system (VPS), is utilized in sizing optimization of tower truss structures 

and its MATLAB code is presented. This method was introduced by Kaveh and Ilchi 

Ghazaan [16] and it is inspired by the damped free vibration of single degree of freedom 

system. In VPS, The solution candidates are considered as particles that gradually approach 

to their equilibrium positions. Equilibrium positions are achieved from current population 

and historically best position. 

The remainder of the paper is organized as follows. The VPS algorithm is briefly 

presented in Section 2. In order to show the capability of the proposed algorithm, two 

numerical examples are studied in Section 3. The last section concludes the paper. Computer 

code in MATLAB is provided in Appendix 1. 

 

 

2. VIBRATING PARTICLES SYSTEM 
 

A recent addition to meta-heuristic algorithms is the vibrating particles system that was 

introduced by Kaveh and Ilchi Ghazaan [16]. The VPS mimics the free vibration of single 

degree of freedom systems with viscous damping and by utilizing a combination of randomness 

and exploitation of obtained results, the quality of the particles improves iteratively as the 

optimization process proceeds. The pseudo code of VPS is provided in Fig. 1 and its code in 

MATLAB is presented in Appendix 1. The steps of this technique are as follows: 

Level 1: Initialization 

Step 1: The VPS parameters are set and the initial locations of all particles are 

determined randomly in the search space. 

Level 2: Search 

Step 1: The objective function value is calculated for each particle. 

Step 2: For each particle, three equilibrium positions with different weights are defined 

that the particle tends to approach: 1. the best position achieved so far across the entire 

population (HB), 2. a good particle (GP) and 3. a bad particle (BP). In order to select the GP 

and BP for each candidate solution, the current population is sorted according to their 

objective function values in an increasing order, and then GP and BP are chosen randomly 

from the first and second half, respectively. 

Step 3: The positions are updated by: 
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where xi
j is the jth variable of particle i. w1, w2 and w3 are three parameters to measure the 
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relative importance of HB, GP and BP, respectively. iter is the current iteration number and 

itermax is the total number of iteration for optimization process.   is a constant. rand1, 

rand2 and rand3 are random numbers uniformly distributed in the range of  [0,1]. 

A parameter like p within (0, 1) is defined and it is specified whether the effect of BP must be 

considered in updating position or not. For each particle, p is compared with rand (a random 

numbers uniformly distributed in the range of [0,1]) and if p < rand, then w3 = 0 and w2 =1 - w1. 

Step 4: If any component of the system violates a boundary, it must be regenerated by 

harmony search-based side constraint handling approach. In this technique, there is a 

possibility like HMCR (harmony memory considering rate) that specifies whether the 

violating component must be changed with the corresponding component of the historically 

best position of a random particle or it should be determined randomly in the search space. 

Moreover, if the component of a historically best position is selected, there is a possibility 

like PAR (pitch adjusting rate) that specifies whether this value should be changed with the 

neighboring value or not. 

Level 3: Terminal condition check 

Step 1: After the predefined maximum evaluation number, the optimization process is 

terminated. 

 
procedure Vibrating Particles System (VPS) 

Initialize algorithm parameters 

Initial positions are created randomly 

The values of objective function are evaluated and HB is stored 

While maximum iterations is not fulfilled 

for each particle 

The GP and BP are chosen 

if P<rand 

w3=0 and w2=1-w1 

end if 

for each component 

New location is obtained by Eq. (1) 

end for 

Violated components are regenerated by harmony search-based handling approach 

end for 

The values of objective function are evaluated and HB is updated 

end while 

end procedure 
Figure 1. Pseudo code of the vibrating particles system algorithm 

 

 

3. NUMERICAL EXAMPLES 
 

Sizing optimization of skeletal structures can be stated as follows: 
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where [1] is a vector containing the design variables; ng is the number of design variables; 

W([1]) is the weight of the structure; nm is the number of elements of the structure; ρi, Ai and 

Li denote the material density, cross-sectional area, and the length of the ith member, 

respectively. ximin and ximax are the lower and upper bounds of the design variable xi, 

respectively. gj([1]) denotes design constraints; nc is the number of constraints. The 

constraints are handled using the well-known penalty approach. 

Two benchmark examples are provided to investigate the performance of the VPS 

algorithm. The values of population size, the total number of iteration, , p, w1 and w2 are 

set to 20, 1500, 0.05, 70%, 0.3 and 0.3 for the examples, respectively. Twenty independent 

optimization runs are carried out for all the examples. The algorithm is coded in MATLAB 

and the structures are analyzed using the direct stiffness method by our own codes. 

 

3.1 A spatial 942-bar tower 

The schematic of a 942-bar tower truss is shown in Fig. 2 (the ground-level nodes being 

fixed). The elements are divided into 76 groups and member groups are presented in Fig. 3. 

A single load case is considered consisting of the lateral loads of 1.12 kips (5.0 kN) applied 

in both x- and y-directions and a vertical load of -6.74 kips (-30 kN) is applied in the z-

direction at all nodes of the tower. A discrete set of standard steel sections selected from W-

shape profile list based on area and radii of gyration properties is used as sizing variables. 

Cross-sectional areas of the elements are supposed to vary between 6.16 and 215 in2 (i.e. 

between 39.74 and 1387.09 cm2). Limitation on stress and stability of truss elements are 

imposed according to the provisions of the ASD-AISC [17]. 

 

 

 

 
3D view Top view Side view 

Figure 2. Schematic of the spatial 942-bar tower 
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Figure 3. Member groups of spatial 942-bar tower 

 

Table 1 presents the results obtained by the ECBO [18] and VPS. The proposed method 

obtained 3,296,202 m3 which is better than 3,376,968 m3 found by the ECBO. The average 

optimized weight and standard deviation on average weight of the VPS are, respectively, 

3,346,822 m3 and 41,617 m3. The best designs have been located in 19,960 and 26,180 

analyses for ECBO and VPS, respectively. Fig. 4 shows the convergence curves of the best 

results obtained by these algorithms. 

 
Table 1: Comparison of optimized designs obtained for the spatial 942-bar tower problem 

No. 

Sections 

No. 

Sections 

No. 

Sections 

ECBO 

[16] 
VPS 

ECBO 

[16] 
VPS 

ECBO 

[16] 
VPS 

1 W12×190 W12×170 27 W10×33 W8×24 53 W6×25 W10×22 

2 W36×230 W36×260 28 W6×25 W8×24 54 W8×21 W10×22 

3 W40×199 W44×262 29 W8×31 W12×26 55 W8×21 W10×22 

4 W24×229 W30×235 30 W8×31 W10×22 56 W8×21 W10×22 

5 W36×150 W36×245 31 W8×21 W8×21 57 W8×21 W8×21 

6 W30×173 W24×229 32 W12×26 W10×22 58 W8×21 W10×22 

7 W24×250 W40×199 33 W8×21 W8×21 59 W21×62 W14×43 

8 W27×258 W14×193 34 W8×21 W10×22 60 W12×152 W24×117 

9 W14×159 W40×174 35 W8×21 W8×21 61 W14×120 W18×119 

10 W30×191 W24×162 36 W18×86 W16×89 62 W12×65 W14×38 

11 W18×158 W14×145 37 W30×191 W30×211 63 W14×30 W10×77 

12 W18×119 W18×119 38 W30×116 W14×109 64 W8×21 W14×61 

13 W24×250 W12×279 39 W27×178 W24×131 65 W8×21 W10×22 

14 W14×30 W8×21 40 W24×131 W21×101 66 W8×21 W10×22 

15 W8×21 W10×22 41 W18×86 W10×88 67 W8×21 W8×21 

16 W8×21 W12×26 42 W10×88 W10×77 68 W8×21 W10×22 

17 W8×21 W10×22 43 W21×62 W12×50 69 W8×21 W10×22 

18 W8×21 W10×22 44 W12×136 W27×114 70 W8×21 W10×22 

19 W8×21 W10×22 45 W8×21 W10×22 71 W8×24 W8×31 

20 W8×21 W10×22 46 W8×21 W10×22 72 W8×24 W10×22 

21 W8×21 W6×25 47 W8×21 W10×22 73 W8×21 W12×26 

22 W8×21 W8×24 48 W8×21 W6×25 74 W8×21 W10×22 

23 W8×21 W10×22 49 W8×21 W10×22 75 W8×21 W8×21 

24 W24×117 W14×145 50 W8×21 W8×40 76 W8×21 W8×28 

25 W12×50 W8×31 51 W27×94 W12×58 Best 

volume 

(in.
3
) 

3,376,968 3,296,202 
26 W14×30 W8×24 52 W10×22 W6×25 
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Figure 4. The convergence curves for the spatial 942-bar tower 

 

3.2 A spatial 2386-bar tower 

The schematic of a 2386-bar tower truss is shown in Fig. 5 (the ground-level nodes being 

fixed). The elements are divided into 220 groups and member groups are presented in Fig. 6. 

The Performance constraints and other conditions are the same as those of the first example.  

The designs optimized by ECBO [18] and VPS are compared in Table 2. The best 

designs are found by ECBO and VPS as 14,086,857 m3 and 12,989,713 m3, respectively. 

The average optimized weight and standard deviation on average weight of the VPS are 

13,371,681 m3 and 267,601 m3, respectively. The best designs are achieved after 29,670 and 

29,980 analyses by ECBO and VPS, respectively. Fig. 7 compares the best convergence 

histories of the algorithms. 

 
Table 2: Comparison of optimized designs obtained for the spatial 2386-bar tower problem 

No. 

Sections 

No. 

Sections 

No. 

Sections 

ECBO 

[16] 
VPS 

ECBO 

[16] 
VPS 

ECBO 

[16] 
VPS 

1 W14×730 W14×665 75 W14×38 W16×36 149 W8×21 W6×25 

2 W14×730 W14×605 76 W12×65 W10×68 150 W14×34 W10×22 

3 W14×730 W14×665 77 W14×90 W10×60 151 W10×22 W10×22 

4 W14×665 W14×665 78 W12×65 W14×34 152 W12×30 W8×24 

5 W14×730 W14×605 79 W30×116 W14×43 153 W8×21 W12×26 

6 W14×730 W14×665 80 W14×90 W8×35 154 W10×22 W8×28 

7 W14×730 W14×665 81 W18×76 W21×62 155 W8×24 W8×31 

8 W40×215 W14×665 82 W14×48 W12×45 156 W27×146 W12×79 

9 W14×665 W14×605 83 W10×68 W12×26 157 W14×48 W10×22 

10 W14×500 W14×665 84 W8×28 W12×50 158 W8×21 W10×22 

11 W12×279 W14×665 85 W10×60 W6×25 159 W14×34 W8×24 

12 W33×318 W14×426 86 W14×38 W10×22 160 W8×21 W10×45 

13 W14×605 W14×665 87 W10×45 W10×22 161 W10×22 W33×201 

14 W14×730 W14×426 88 W12×50 W10×22 162 W6×25 W14×34 

15 W14×455 W14×605 89 W14×82 W16×36 163 W8×21 W12×65 

16 W33×221 W14×550 90 W8×40 W6×25 164 W8×24 W12×30 

17 W44×335 W36×245 91 W10×22 W12×26 165 W10×22 W10×22 
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18 W14×426 W33×291 92 W8×21 W10×22 166 W8×24 W10×22 

19 W33×221 W33×263 93 W8×21 W10×22 167 W8×21 W6×25 

20 W24×229 W30×292 94 W12×40 W8×21 168 W8×21 W8×28 

21 W14×145 W33×221 95 W12×40 W14×82 169 W14×34 W14×30 

22 W12×252 W18×158 96 W8×21 W10×22 170 W10×22 W8×24 

23 W27×194 W18×158 97 W10×39 W12×79 171 W8×31 W10×22 

24 W36×245 W12×136 98 W14×30 W21×93 172 W6×25 W8×21 

25 W27×161 W14×109 99 W14×48 W14×30 173 W10×22 W12×26 

26 W33×118 W44×335 100 W10×88 W10×22 174 W8×21 W8×21 

27 W33×201 W18×86 101 W12×50 W14×48 175 W6×25 W10×22 

28 W8×21 W14×30 102 W14×34 W8×24 176 W8×24 W10×22 

29 W14×90 W10×33 103 W14×43 W12×26 177 W8×21 W8×24 

30 W8×21 W8×21 104 W12×65 W8×31 178 W8×21 W12×45 

31 W8×35 W14×61 105 W12×53 W12×26 179 W8×21 W8×24 

32 W30×211 W14×605 106 W12×26 W12×45 180 W8×21 W14×38 

33 W14×120 W14×120 107 W8×21 W14×38 181 W8×21 W10×22 

34 W16×67 W10×22 108 W6×25 W14×38 182 W10×22 W12×26 

35 W10×100 W14×30 109 W10×39 W10×22 183 W6×25 W10×22 

36 W12×26 W10×22 110 W8×28 W10×39 184 W8×21 W12×58 

37 W8×31 W6×25 111 W10×39 W16×89 185 W8×21 W14×34 

38 W33×118 W10×22 112 W8×21 W14×34 186 W14×30 W10×22 

39 W10×68 W10×22 113 W10×22 W8×21 187 W10×22 W6×25 

40 W8×21 W12×26 114 W10×49 W14×38 188 W14×605 W14×605 

41 W8×35 W10×22 115 W10×33 W12×30 189 W16×36 W8×21 

42 W14×74 W10×22 116 W8×31 W10×22 190 W8×24 W8×24 

43 W8×24 W12×26 117 W10×22 W8×28 191 W14×38 W10×22 

44 W14×120 W12×26 118 W8×21 W6×25 192 W8×21 W10×22 

45 W8×24 W8×24 119 W8×28 W12×58 193 W10×22 W8×24 

46 W10×39 W8×21 120 W14×30 W24×279 194 W8×21 W12×26 

47 W16×36 W6×25 121 W12×26 W14×38 195 W8×21 W10×22 

48 W8×21 W10×49 122 W10×49 W8×31 196 W8×21 W10×22 

49 W8×21 W8×21 123 W8×21 W10×22 197 W8×28 W6×25 

50 W12×40 W10×22 124 W18×86 W10×22 198 W8×21 W12×30 

51 W14×34 W12×26 125 W33×118 W18×158 199 W8×21 W8×24 

52 W12×26 W10×22 126 W8×21 W8×21 200 W10×22 W10×22 

53 W8×21 W10×22 127 W10×22 W21×182 201 W12×26 W10×22 

54 W8×21 W10×22 128 W12×26 W8×31 202 W8×21 W12×26 

55 W8×21 W12×26 129 W10×22 W10×22 203 W8×21 W10×22 

56 W8×21 W10×22 130 W8×24 W14×48 204 W6×25 W10×22 

57 W8×21 W8×31 131 W8×21 W16×36 205 W10×22 W8×24 

58 W8×24 W10×22 132 W8×21 W12×30 206 W8×21 W6×25 

59 W14×34 W6×25 133 W8×21 W8×21 207 W10×22 W8×21 

60 W10×22 W10×22 134 W8×21 W8×21 208 W8×21 W8×24 

61 W16×36 W10×22 135 W8×21 W10×22 209 W8×21 W12×26 

62 W8×35 W8×21 136 W12×26 W10×22 210 W8×21 W10×22 

63 W33×318 W10×112 137 W10×22 W10×49 211 W8×21 W12×26 

64 W12×136 W16×89 138 W10×22 W12×106 212 W6×25 W10×22 

65 W21×147 W10×68 139 W8×21 W10×22 213 W8×21 W10×22 

66 W18×86 W12×79 140 W10×22 W6×25 214 W8×21 W10×22 

67 W10×88 W10×60 141 W8×21 W10×22 215 W8×21 W8×24 

68 W14×82 W14×61 142 W8×21 W10×22 216 W8×21 W10×22 

69 W12×152 W14×43 143 W8×21 W10×22 217 W12×26 W8×21 
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70 W10×49 W16×67 144 W8×21 W10×22 218 W8×31 W10×22 

71 W10×60 W21×62 145 W14×30 W12×30 219 W12×58 W12×53 

72 W12×136 W12×58 146 W10×22 W12×40 220 W14×99 W27×178 

73 W16×89 W14×61 147 W8×21 W14×550 Best 

volume 

(in.
3
) 

14,086,857 12,989,713 
74 W14×90 W21×62 148 W8×21 W10×22 

 

 

 

 
3D view Top view Side view 

Figure 5. Schematic of the spatial 2386-bar tower 
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Figure 6. Member groups of spatial 2386-bar tower 
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Figure 7. The convergence curves for the spatial 2386-bar tower 

 

 

4. CONCLUSION 
 

MATLAB code for the VPS algorithm is presented and two numerical examples chosen 

from size optimum design of truss towers are studied to test and verify the efficiency of the 

proposed method. Their results are compared with those of the ECBO algorithm. The VPS 

algorithm finds superior optimal designs for all the problems investigated, illustrating the 

capability of the present method in solving constrained problems. Besides, the average 

optimized results and standard deviation on averages results obtained by VPS are 

acceptable. It can be seen from convergence history diagrams that the convergence rate of 

the VPS algorithm is higher than that of the ECBO. 

 

 

APPENDIX 1: VPS IN MATLAB 
 

The VPS code in MATLAB: 

 
% VIBRATING PARTICLES SYSTEM - VPS 

 

% clear memory 

clear all 

 

% Initializing variables 

popSize=20;                        % Size of the population 

nVar=29;                           % Number of optimization variables 

maxIt=200;                         % Maximum number of iteration 

xMin=-500;                         % Lower bound of the variables 

xMax=500;                          % Upper bound of the variables 

alpha=0.05;                        % Parameter in Eq. (3) 

w1=0.3;w2=0.3;w3=1-w1-w2;          % Parameters in Eq. (1) 

p=0.2;                            % With the probability of (1-p) the effect 

of BP is ignored in updating 

PAR=0.1;HMCR=0.95;neighbor=0.1; % Parameters for handling the side 

constraints 
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% Initializing particles 

position=xMin+rand(popSize,nVar).*(xMax-xMin); 

  

% Search 

agentCost=zeros(popSize,3);        % Array of agent costs 

HBV=zeros(popSize,nVar+2);         % Historically best matrix 

for iter=1:maxIt 

     

    % Evaluating and storing 

    for m=1:popSize 

        [penalizedWeight,weight]=FEM(position(m,:)); % Evaluating the 

objective function for each particle 

        agentCost(m,1)=penalizedWeight; 

        agentCost(m,2)=m; 

        agentCost(m,3)=weight; 

    end 

    sortedAgentCost=sortrows(agentCost); 

    for m=1:popSize 

        if iter==1 || agentCost(m,1)<HBV(m,1) 

            HBV(m,1)=agentCost(m,1); 

            HBV(m,2)=agentCost(m,3); 

            for n=1:nVar 

                HBV(m,n+2)=position(m,n); 

            end 

        end 

    end 

    sortedHBV=sortrows(HBV); 

     

    % Updating particle positions 

    D=(iter/maxIt)^(-alpha); % Eq. (3) 

    for m=1:popSize 

        temp1=m; 

        temp2=m; 

        while temp1==m 

            temp1=ceil(rand*0.5*popSize); 

        end 

        while temp2==m 

            temp2=popSize-ceil(rand*0.5*popSize)+1; 

        end 

        if p<rand 

            w3=0; 

            w2=1-w1; 

        end 

        for n=1:nVar 

            A=(w1*(sortedHBV(1,2+n)-

position(m,n)))+(w2*(position(sortedAgentCost(temp1,2),n)-

position(m,n)))+(w3*(position(sortedAgentCost(temp2,2),n)-position(m,n))); % 

Eq. (4) 

            comp1=(D*rand*A)+sortedHBV(1,2+n); 

            comp2=(D*rand*A)+position(sortedAgentCost(temp1,2),n); 

            comp3=(D*rand*A)+position(sortedAgentCost(temp2,2),n); 

            position(m,n)=(w1*comp1)+(w2*comp2)+(w3*comp3); % Eq. (1) 

        end 

        w2=0.3;w3=1-w1-w2; 

    end 

     

    % Handling the side constraints 

    for m=1:popSize 
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        for n=1:nVar 

            if position(m,n)<xMin || position(m,n)>xMax 

                temp1=rand;temp2=rand;temp3=ceil(rand*popSize); 

                if temp1<=HMCR && temp2<=(1-PAR) 

                    position(m,n)=sortedHBV(temp3,2+n); 

                elseif temp1<=HMCR && temp2>(1-PAR) 

                    position(m,n)=sortedHBV(temp3,2+n)+neighbor; 

                    if position(m,n)>xMax 

                        position(m,n)=sortedHBV(temp3,2+n)-2*neighbor; 

                    end 

                else 

                    position(m,n)=xMin+(rand*(xMax-xMin)); 

                end 

            end 

        end 

    end 

     

end 

  

disp(sortedHBV(1,:)) 
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