

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING

Int. J. Optim. Civil Eng., 2017; 7(3):355-366

MATLAB CODE FOR VIBRATING PARTICLES SYSTEM

ALGORITHM

A. Kaveh
*, †

 and M. Ilchi Ghazaan
Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of

Science and Technology, Narmak, Tehran, P.O. Box 16846-13114, Iran

ABSTRACT

In this paper, MATLAB code for a recently developed meta-heuristic methodology, the

vibrating particles system (VPS) algorithm, is presented. The VPS is a population-based

algorithm which simulates a free vibration of single degree of freedom systems with viscous

damping. The particles gradually approach to their equilibrium positions that are achieved

from current population and historically best position. Two truss towers with 942 and 2386

elements are examined for the validity of the present algorithm; however, the performance

VPS has already been proven through truss and frame design optimization problems.

Keywords: vibrating particles system algorithm; MATLAB; meta-heuristic; structural

optimization.

Received: 25 October 2016 Accepted: 30 January 2017

1. INTRODUCTION

Structural optimization can be classified as follows: 1. obtaining optimal size of structural

members (sizing optimization); 2. finding the optimal form for the structure (shape

optimization); 3. achieving optimal size and connectivity between structural members

(topology optimization). Sizing optimization problems are very popular design problems and

can be found frequently in papers [1-5].

Recent developments in meta-heuristic optimization algorithms have made these methods

suitable even for complicated design problems and they have been widely employed for

obtaining the optimal solutions of engineering design problems. Some of the most recent

algorithms in this field are: teaching–learning-based optimization (TLBO) [6], water cycle

algorithm (WCA) [7], colliding bodies optimization (CBO) [8], grey wolf optimizer (GWO)

*
Corresponding author: Centre of Excellence for Fundamental Studies in Structural Engineering, Iran

University of Science and Technology, Narmak, Tehran, P.O. Box 16846-13114, Iran. Tel.: +98 21

77240104; fax: +98 21 77240398
†
E-mail address: alikaveh@iust.ac.ir (A. Kaveh)

A. Kaveh and M. Ilchi Ghazaan

356

[9], ant lion optimizer (ALO) [10], tug of war optimization (TWO) [11], whale optimization

algorithm (WOA) [12] and water evaporation optimization (WEO) [13]. Further advances

and applications of metaheuristics can be found in Kaveh [14,15].

In this study, a new nature-inspired meta-heuristic optimization algorithm, called

vibrating particles system (VPS), is utilized in sizing optimization of tower truss structures

and its MATLAB code is presented. This method was introduced by Kaveh and Ilchi

Ghazaan [16] and it is inspired by the damped free vibration of single degree of freedom

system. In VPS, The solution candidates are considered as particles that gradually approach

to their equilibrium positions. Equilibrium positions are achieved from current population

and historically best position.

The remainder of the paper is organized as follows. The VPS algorithm is briefly

presented in Section 2. In order to show the capability of the proposed algorithm, two

numerical examples are studied in Section 3. The last section concludes the paper. Computer

code in MATLAB is provided in Appendix 1.

2. VIBRATING PARTICLES SYSTEM

A recent addition to meta-heuristic algorithms is the vibrating particles system that was

introduced by Kaveh and Ilchi Ghazaan [16]. The VPS mimics the free vibration of single

degree of freedom systems with viscous damping and by utilizing a combination of randomness

and exploitation of obtained results, the quality of the particles improves iteratively as the

optimization process proceeds. The pseudo code of VPS is provided in Fig. 1 and its code in

MATLAB is presented in Appendix 1. The steps of this technique are as follows:

Level 1: Initialization

Step 1: The VPS parameters are set and the initial locations of all particles are

determined randomly in the search space.

Level 2: Search

Step 1: The objective function value is calculated for each particle.

Step 2: For each particle, three equilibrium positions with different weights are defined

that the particle tends to approach: 1. the best position achieved so far across the entire

population (HB), 2. a good particle (GP) and 3. a bad particle (BP). In order to select the GP

and BP for each candidate solution, the current population is sorted according to their

objective function values in an increasing order, and then GP and BP are chosen randomly

from the first and second half, respectively.

Step 3: The positions are updated by:

]3...[]2...[]1...[321
jjjj

i BPrandADwGPrandADwHBrandADwx  (1)

1321  www (2)

)(
maxiter

iter
D (3)

)].([)].([)].([321
j

i
jj

i
jj

i
j xBPwxGPwxHBwA  (4)

where xi
j is the jth variable of particle i. w1, w2 and w3 are three parameters to measure the

MATLAB CODE FOR VIBRATING PARTICLES SYSTEM ALGORITHM

357

relative importance of HB, GP and BP, respectively. iter is the current iteration number and

itermax is the total number of iteration for optimization process.  is a constant. rand1,

rand2 and rand3 are random numbers uniformly distributed in the range of [0,1].

A parameter like p within (0, 1) is defined and it is specified whether the effect of BP must be

considered in updating position or not. For each particle, p is compared with rand (a random

numbers uniformly distributed in the range of [0,1]) and if p < rand, then w3 = 0 and w2 =1 - w1.

Step 4: If any component of the system violates a boundary, it must be regenerated by

harmony search-based side constraint handling approach. In this technique, there is a

possibility like HMCR (harmony memory considering rate) that specifies whether the

violating component must be changed with the corresponding component of the historically

best position of a random particle or it should be determined randomly in the search space.

Moreover, if the component of a historically best position is selected, there is a possibility

like PAR (pitch adjusting rate) that specifies whether this value should be changed with the

neighboring value or not.

Level 3: Terminal condition check

Step 1: After the predefined maximum evaluation number, the optimization process is

terminated.

procedure Vibrating Particles System (VPS)

Initialize algorithm parameters

Initial positions are created randomly

The values of objective function are evaluated and HB is stored

While maximum iterations is not fulfilled

for each particle

The GP and BP are chosen

if P<rand

w3=0 and w2=1-w1

end if

for each component

New location is obtained by Eq. (1)

end for

Violated components are regenerated by harmony search-based handling approach

end for

The values of objective function are evaluated and HB is updated

end while

end procedure
Figure 1. Pseudo code of the vibrating particles system algorithm

3. NUMERICAL EXAMPLES

Sizing optimization of skeletal structures can be stated as follows:

],..,,[}{ 21 ngxxxXFind 





nm

i

iii LAXW minimize to
1

})({ 
(5)

A. Kaveh and M. Ilchi Ghazaan

358









max

,...,2,1,0})({

iimin i

j

xxx

ncjXg
 :to subjected

where [1] is a vector containing the design variables; ng is the number of design variables;

W([1]) is the weight of the structure; nm is the number of elements of the structure; ρi, Ai and

Li denote the material density, cross-sectional area, and the length of the ith member,

respectively. ximin and ximax are the lower and upper bounds of the design variable xi,

respectively. gj([1]) denotes design constraints; nc is the number of constraints. The

constraints are handled using the well-known penalty approach.

Two benchmark examples are provided to investigate the performance of the VPS

algorithm. The values of population size, the total number of iteration, , p, w1 and w2 are

set to 20, 1500, 0.05, 70%, 0.3 and 0.3 for the examples, respectively. Twenty independent

optimization runs are carried out for all the examples. The algorithm is coded in MATLAB

and the structures are analyzed using the direct stiffness method by our own codes.

3.1 A spatial 942-bar tower

The schematic of a 942-bar tower truss is shown in Fig. 2 (the ground-level nodes being

fixed). The elements are divided into 76 groups and member groups are presented in Fig. 3.

A single load case is considered consisting of the lateral loads of 1.12 kips (5.0 kN) applied

in both x- and y-directions and a vertical load of -6.74 kips (-30 kN) is applied in the z-

direction at all nodes of the tower. A discrete set of standard steel sections selected from W-

shape profile list based on area and radii of gyration properties is used as sizing variables.

Cross-sectional areas of the elements are supposed to vary between 6.16 and 215 in2 (i.e.

between 39.74 and 1387.09 cm2). Limitation on stress and stability of truss elements are

imposed according to the provisions of the ASD-AISC [17].

3D view Top view Side view

Figure 2. Schematic of the spatial 942-bar tower

MATLAB CODE FOR VIBRATING PARTICLES SYSTEM ALGORITHM

359

1

st
, 2

nd
 and 3

rd
 stories 13

th
, 14

th
 and 15

th
 stories 21

st
, 22

nd
 and 23

rd
 stories

Figure 3. Member groups of spatial 942-bar tower

Table 1 presents the results obtained by the ECBO [18] and VPS. The proposed method

obtained 3,296,202 m3 which is better than 3,376,968 m3 found by the ECBO. The average

optimized weight and standard deviation on average weight of the VPS are, respectively,

3,346,822 m3 and 41,617 m3. The best designs have been located in 19,960 and 26,180

analyses for ECBO and VPS, respectively. Fig. 4 shows the convergence curves of the best

results obtained by these algorithms.

Table 1: Comparison of optimized designs obtained for the spatial 942-bar tower problem

No.

Sections

No.

Sections

No.

Sections

ECBO

[16]
VPS

ECBO

[16]
VPS

ECBO

[16]
VPS

1 W12×190 W12×170 27 W10×33 W8×24 53 W6×25 W10×22

2 W36×230 W36×260 28 W6×25 W8×24 54 W8×21 W10×22

3 W40×199 W44×262 29 W8×31 W12×26 55 W8×21 W10×22

4 W24×229 W30×235 30 W8×31 W10×22 56 W8×21 W10×22

5 W36×150 W36×245 31 W8×21 W8×21 57 W8×21 W8×21

6 W30×173 W24×229 32 W12×26 W10×22 58 W8×21 W10×22

7 W24×250 W40×199 33 W8×21 W8×21 59 W21×62 W14×43

8 W27×258 W14×193 34 W8×21 W10×22 60 W12×152 W24×117

9 W14×159 W40×174 35 W8×21 W8×21 61 W14×120 W18×119

10 W30×191 W24×162 36 W18×86 W16×89 62 W12×65 W14×38

11 W18×158 W14×145 37 W30×191 W30×211 63 W14×30 W10×77

12 W18×119 W18×119 38 W30×116 W14×109 64 W8×21 W14×61

13 W24×250 W12×279 39 W27×178 W24×131 65 W8×21 W10×22

14 W14×30 W8×21 40 W24×131 W21×101 66 W8×21 W10×22

15 W8×21 W10×22 41 W18×86 W10×88 67 W8×21 W8×21

16 W8×21 W12×26 42 W10×88 W10×77 68 W8×21 W10×22

17 W8×21 W10×22 43 W21×62 W12×50 69 W8×21 W10×22

18 W8×21 W10×22 44 W12×136 W27×114 70 W8×21 W10×22

19 W8×21 W10×22 45 W8×21 W10×22 71 W8×24 W8×31

20 W8×21 W10×22 46 W8×21 W10×22 72 W8×24 W10×22

21 W8×21 W6×25 47 W8×21 W10×22 73 W8×21 W12×26

22 W8×21 W8×24 48 W8×21 W6×25 74 W8×21 W10×22

23 W8×21 W10×22 49 W8×21 W10×22 75 W8×21 W8×21

24 W24×117 W14×145 50 W8×21 W8×40 76 W8×21 W8×28

25 W12×50 W8×31 51 W27×94 W12×58 Best

volume

(in.
3
)

3,376,968 3,296,202
26 W14×30 W8×24 52 W10×22 W6×25

A. Kaveh and M. Ilchi Ghazaan

360

Figure 4. The convergence curves for the spatial 942-bar tower

3.2 A spatial 2386-bar tower

The schematic of a 2386-bar tower truss is shown in Fig. 5 (the ground-level nodes being

fixed). The elements are divided into 220 groups and member groups are presented in Fig. 6.

The Performance constraints and other conditions are the same as those of the first example.

The designs optimized by ECBO [18] and VPS are compared in Table 2. The best

designs are found by ECBO and VPS as 14,086,857 m3 and 12,989,713 m3, respectively.

The average optimized weight and standard deviation on average weight of the VPS are

13,371,681 m3 and 267,601 m3, respectively. The best designs are achieved after 29,670 and

29,980 analyses by ECBO and VPS, respectively. Fig. 7 compares the best convergence

histories of the algorithms.

Table 2: Comparison of optimized designs obtained for the spatial 2386-bar tower problem

No.

Sections

No.

Sections

No.

Sections

ECBO

[16]
VPS

ECBO

[16]
VPS

ECBO

[16]
VPS

1 W14×730 W14×665 75 W14×38 W16×36 149 W8×21 W6×25

2 W14×730 W14×605 76 W12×65 W10×68 150 W14×34 W10×22

3 W14×730 W14×665 77 W14×90 W10×60 151 W10×22 W10×22

4 W14×665 W14×665 78 W12×65 W14×34 152 W12×30 W8×24

5 W14×730 W14×605 79 W30×116 W14×43 153 W8×21 W12×26

6 W14×730 W14×665 80 W14×90 W8×35 154 W10×22 W8×28

7 W14×730 W14×665 81 W18×76 W21×62 155 W8×24 W8×31

8 W40×215 W14×665 82 W14×48 W12×45 156 W27×146 W12×79

9 W14×665 W14×605 83 W10×68 W12×26 157 W14×48 W10×22

10 W14×500 W14×665 84 W8×28 W12×50 158 W8×21 W10×22

11 W12×279 W14×665 85 W10×60 W6×25 159 W14×34 W8×24

12 W33×318 W14×426 86 W14×38 W10×22 160 W8×21 W10×45

13 W14×605 W14×665 87 W10×45 W10×22 161 W10×22 W33×201

14 W14×730 W14×426 88 W12×50 W10×22 162 W6×25 W14×34

15 W14×455 W14×605 89 W14×82 W16×36 163 W8×21 W12×65

16 W33×221 W14×550 90 W8×40 W6×25 164 W8×24 W12×30

17 W44×335 W36×245 91 W10×22 W12×26 165 W10×22 W10×22

MATLAB CODE FOR VIBRATING PARTICLES SYSTEM ALGORITHM

361

18 W14×426 W33×291 92 W8×21 W10×22 166 W8×24 W10×22

19 W33×221 W33×263 93 W8×21 W10×22 167 W8×21 W6×25

20 W24×229 W30×292 94 W12×40 W8×21 168 W8×21 W8×28

21 W14×145 W33×221 95 W12×40 W14×82 169 W14×34 W14×30

22 W12×252 W18×158 96 W8×21 W10×22 170 W10×22 W8×24

23 W27×194 W18×158 97 W10×39 W12×79 171 W8×31 W10×22

24 W36×245 W12×136 98 W14×30 W21×93 172 W6×25 W8×21

25 W27×161 W14×109 99 W14×48 W14×30 173 W10×22 W12×26

26 W33×118 W44×335 100 W10×88 W10×22 174 W8×21 W8×21

27 W33×201 W18×86 101 W12×50 W14×48 175 W6×25 W10×22

28 W8×21 W14×30 102 W14×34 W8×24 176 W8×24 W10×22

29 W14×90 W10×33 103 W14×43 W12×26 177 W8×21 W8×24

30 W8×21 W8×21 104 W12×65 W8×31 178 W8×21 W12×45

31 W8×35 W14×61 105 W12×53 W12×26 179 W8×21 W8×24

32 W30×211 W14×605 106 W12×26 W12×45 180 W8×21 W14×38

33 W14×120 W14×120 107 W8×21 W14×38 181 W8×21 W10×22

34 W16×67 W10×22 108 W6×25 W14×38 182 W10×22 W12×26

35 W10×100 W14×30 109 W10×39 W10×22 183 W6×25 W10×22

36 W12×26 W10×22 110 W8×28 W10×39 184 W8×21 W12×58

37 W8×31 W6×25 111 W10×39 W16×89 185 W8×21 W14×34

38 W33×118 W10×22 112 W8×21 W14×34 186 W14×30 W10×22

39 W10×68 W10×22 113 W10×22 W8×21 187 W10×22 W6×25

40 W8×21 W12×26 114 W10×49 W14×38 188 W14×605 W14×605

41 W8×35 W10×22 115 W10×33 W12×30 189 W16×36 W8×21

42 W14×74 W10×22 116 W8×31 W10×22 190 W8×24 W8×24

43 W8×24 W12×26 117 W10×22 W8×28 191 W14×38 W10×22

44 W14×120 W12×26 118 W8×21 W6×25 192 W8×21 W10×22

45 W8×24 W8×24 119 W8×28 W12×58 193 W10×22 W8×24

46 W10×39 W8×21 120 W14×30 W24×279 194 W8×21 W12×26

47 W16×36 W6×25 121 W12×26 W14×38 195 W8×21 W10×22

48 W8×21 W10×49 122 W10×49 W8×31 196 W8×21 W10×22

49 W8×21 W8×21 123 W8×21 W10×22 197 W8×28 W6×25

50 W12×40 W10×22 124 W18×86 W10×22 198 W8×21 W12×30

51 W14×34 W12×26 125 W33×118 W18×158 199 W8×21 W8×24

52 W12×26 W10×22 126 W8×21 W8×21 200 W10×22 W10×22

53 W8×21 W10×22 127 W10×22 W21×182 201 W12×26 W10×22

54 W8×21 W10×22 128 W12×26 W8×31 202 W8×21 W12×26

55 W8×21 W12×26 129 W10×22 W10×22 203 W8×21 W10×22

56 W8×21 W10×22 130 W8×24 W14×48 204 W6×25 W10×22

57 W8×21 W8×31 131 W8×21 W16×36 205 W10×22 W8×24

58 W8×24 W10×22 132 W8×21 W12×30 206 W8×21 W6×25

59 W14×34 W6×25 133 W8×21 W8×21 207 W10×22 W8×21

60 W10×22 W10×22 134 W8×21 W8×21 208 W8×21 W8×24

61 W16×36 W10×22 135 W8×21 W10×22 209 W8×21 W12×26

62 W8×35 W8×21 136 W12×26 W10×22 210 W8×21 W10×22

63 W33×318 W10×112 137 W10×22 W10×49 211 W8×21 W12×26

64 W12×136 W16×89 138 W10×22 W12×106 212 W6×25 W10×22

65 W21×147 W10×68 139 W8×21 W10×22 213 W8×21 W10×22

66 W18×86 W12×79 140 W10×22 W6×25 214 W8×21 W10×22

67 W10×88 W10×60 141 W8×21 W10×22 215 W8×21 W8×24

68 W14×82 W14×61 142 W8×21 W10×22 216 W8×21 W10×22

69 W12×152 W14×43 143 W8×21 W10×22 217 W12×26 W8×21

A. Kaveh and M. Ilchi Ghazaan

362

70 W10×49 W16×67 144 W8×21 W10×22 218 W8×31 W10×22

71 W10×60 W21×62 145 W14×30 W12×30 219 W12×58 W12×53

72 W12×136 W12×58 146 W10×22 W12×40 220 W14×99 W27×178

73 W16×89 W14×61 147 W8×21 W14×550 Best

volume

(in.
3
)

14,086,857 12,989,713
74 W14×90 W21×62 148 W8×21 W10×22

3D view Top view Side view

Figure 5. Schematic of the spatial 2386-bar tower

1
st
 story 2

nd
 story 32

nd
 story

Figure 6. Member groups of spatial 2386-bar tower

MATLAB CODE FOR VIBRATING PARTICLES SYSTEM ALGORITHM

363

Figure 7. The convergence curves for the spatial 2386-bar tower

4. CONCLUSION

MATLAB code for the VPS algorithm is presented and two numerical examples chosen

from size optimum design of truss towers are studied to test and verify the efficiency of the

proposed method. Their results are compared with those of the ECBO algorithm. The VPS

algorithm finds superior optimal designs for all the problems investigated, illustrating the

capability of the present method in solving constrained problems. Besides, the average

optimized results and standard deviation on averages results obtained by VPS are

acceptable. It can be seen from convergence history diagrams that the convergence rate of

the VPS algorithm is higher than that of the ECBO.

APPENDIX 1: VPS IN MATLAB

The VPS code in MATLAB:

% VIBRATING PARTICLES SYSTEM - VPS

% clear memory

clear all

% Initializing variables

popSize=20; % Size of the population

nVar=29; % Number of optimization variables

maxIt=200; % Maximum number of iteration

xMin=-500; % Lower bound of the variables

xMax=500; % Upper bound of the variables

alpha=0.05; % Parameter in Eq. (3)

w1=0.3;w2=0.3;w3=1-w1-w2; % Parameters in Eq. (1)

p=0.2; % With the probability of (1-p) the effect

of BP is ignored in updating

PAR=0.1;HMCR=0.95;neighbor=0.1; % Parameters for handling the side

constraints

A. Kaveh and M. Ilchi Ghazaan

364

% Initializing particles

position=xMin+rand(popSize,nVar).*(xMax-xMin);

% Search

agentCost=zeros(popSize,3); % Array of agent costs

HBV=zeros(popSize,nVar+2); % Historically best matrix

for iter=1:maxIt

 % Evaluating and storing

 for m=1:popSize

 [penalizedWeight,weight]=FEM(position(m,:)); % Evaluating the

objective function for each particle

 agentCost(m,1)=penalizedWeight;

 agentCost(m,2)=m;

 agentCost(m,3)=weight;

 end

 sortedAgentCost=sortrows(agentCost);

 for m=1:popSize

 if iter==1 || agentCost(m,1)<HBV(m,1)

 HBV(m,1)=agentCost(m,1);

 HBV(m,2)=agentCost(m,3);

 for n=1:nVar

 HBV(m,n+2)=position(m,n);

 end

 end

 end

 sortedHBV=sortrows(HBV);

 % Updating particle positions

 D=(iter/maxIt)^(-alpha); % Eq. (3)

 for m=1:popSize

 temp1=m;

 temp2=m;

 while temp1==m

 temp1=ceil(rand*0.5*popSize);

 end

 while temp2==m

 temp2=popSize-ceil(rand*0.5*popSize)+1;

 end

 if p<rand

 w3=0;

 w2=1-w1;

 end

 for n=1:nVar

 A=(w1*(sortedHBV(1,2+n)-

position(m,n)))+(w2*(position(sortedAgentCost(temp1,2),n)-

position(m,n)))+(w3*(position(sortedAgentCost(temp2,2),n)-position(m,n))); %

Eq. (4)

 comp1=(D*rand*A)+sortedHBV(1,2+n);

 comp2=(D*rand*A)+position(sortedAgentCost(temp1,2),n);

 comp3=(D*rand*A)+position(sortedAgentCost(temp2,2),n);

 position(m,n)=(w1*comp1)+(w2*comp2)+(w3*comp3); % Eq. (1)

 end

 w2=0.3;w3=1-w1-w2;

 end

 % Handling the side constraints

 for m=1:popSize

MATLAB CODE FOR VIBRATING PARTICLES SYSTEM ALGORITHM

365

 for n=1:nVar

 if position(m,n)<xMin || position(m,n)>xMax

 temp1=rand;temp2=rand;temp3=ceil(rand*popSize);

 if temp1<=HMCR && temp2<=(1-PAR)

 position(m,n)=sortedHBV(temp3,2+n);

 elseif temp1<=HMCR && temp2>(1-PAR)

 position(m,n)=sortedHBV(temp3,2+n)+neighbor;

 if position(m,n)>xMax

 position(m,n)=sortedHBV(temp3,2+n)-2*neighbor;

 end

 else

 position(m,n)=xMin+(rand*(xMax-xMin));

 end

 end

 end

 end

end

disp(sortedHBV(1,:))

REFERENCES

1. Degertekin SO. Optimum design of steel frames using harmony search algorithm, Struct

Multidisc Optim 2008; 36: 393-401.

2. Hasancebi O, Carbas S, Dogn E, Erdal F, Saka MP. Comparison of non-deterministic search

techniques in the optimum design of real size steel frames, Comput Struct 2010; 88: 1033-

48.

3. Camp CV, Farshchin M. Design of space trusses using modified teaching - learning based

optimization, Eng Struct 2014; 62–63: 87–97.

4. Kaveh A, Ilchi Ghazaan M. A comparative study of CBO and ECBO for optimal design of

skeletal structures, Comput Struct 2015; 153: 137-47.

5. Gholizadeh S, Ebadijalal M. Seismic design optimization of steel structures by a sequential

ECBO algorithm, Int J Optim Civil Eng 2017; 7(2): 157-71.

6. Rao RV, Savsani VJ, Vakharia DP. Teaching–learning-based optimization: a novel method

for constrained mechanical design optimization problems, Comput Aided Des 2011; 43(3):

303–15.

7. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm-A novel

metaheuristic optimization method for solving constrained engineering optimization

problems, Comput Struct 2012; 110: 151-66.

8. Kaveh A, Mahdavi VR. Colliding bodies optimization: A novel meta-heuristic method,

Comput Struct 2014; 139: 18-27.

9. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer, Adv Eng Softw 2014; 69: 46-61.

10. Mirjalili S. The ant lion optimizer, Adv Eng Softw 2015; 83: 80-98.

11. Kaveh A, Zolghadr A. A novel metaheuristic algorithm: tug of war optimization, Int J

Optim Civil Eng 2016; 6(4): 469-92.

12. Mirjalili S, Lewis A. The whale optimization algorithm, Adv Eng Softw 2016; 95: 51-67.

13. Kaveh A, Bakhshpoori T. Water Evaporation Optimization: A novel physically inspired

optimization algorithm, Comput Struct 2016; 167: 69-85.

A. Kaveh and M. Ilchi Ghazaan

366

14. Kaveh A. Advances in Metaheuristic Algorithms for Optimal Design of Structures, 2
nd

edition, Springer, Switzerland, 2017.

15. Kaveh A. Applications of Metaheuristic Optimization in Civil Engineering, Springer,

Switzerland, 2017.

16. Kaveh A, Ilchi Ghazaan M. Vibrating particles system algorithm for truss optimization with

multiple natural frequency constraints, Acta Mech 2017; 228: 307-22.

17. American Institute of Steel Construction (AISC), Manual of steel construction–allowable

stress design 9th ed, Chicago, AISC, 1989.

18. Kaveh A, Ilchi Ghazaan M. Optimum design of large-scale truss towers using cascade

optimization, Acta Mech 2016; 227(9): 2645-56.

