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ABSTRACT 
 

Due to the favorable performance of structural topology optimization to create a proper 

understanding in the early stages of design, this issue  is taken into consideration from the 

standpoint of research or industrial application in recent decades. Over the last three decades, 

several methods have been proposed for topology optimization.  One of the methods that has 

been effectively used in structural topology optimization is level set method. Since in the level 

set method, the boundary of design domain is displayed implicitly, this method can easily 

modify the shape and topology of structure. Topological design with multiple constraints is of 

great importance in practical engineering design problems. Most recent topology optimization 

methods have used only the volume constraint; so in this paper, in addition to current volume 

constraint, the level set method combines with other constraints such as displacement and 

frequency. To demonstrate the effectiveness of the proposed level set approach, several 

examples are presented. 
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1. INTRODUCTION 
 

Nowadays structural topology optimization problems are very significant and demanding in 

many engineering fields and they are capable of speeding up the structural design process 

and producing valid and reliable solutions to different engineering problems. This branch of 

engineering science has made considerable progress in last three decades So far, 

considerable researches and several topology optimization methods such as homogenization 
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methods (Bendsøe and Kikuchi [1]; Suzuki and Kikuchi [2]; Allaire and Kohn [3]; Allaire et 

al. [4]), Solid Isotropic Material with Penalization (SIMP) methods (Bendsøe [5]; Bendsøe 

and Sigmund 2003 [6]); Evolutionary Structural Optimization (ESO) methods (Xie and 

Steven [7]) and topology optimization based ant colony methodology (Kaveh et. al. [8]) 

have been  suggested. The initial research on Bi-directional evolutionary Structural 

optimization (BESO) was carried out by Yang et al. [9] for stiffness optimization. The 

BESO notion has also been applied to „full stress design‟ by using the von Mises stress 

criterion (Querin et al. [10]). A new BESO algorithm for stiffness optimization developed by 

authors (Huang and Xie [11]) which addresses many issues related to topology optimization 

of continuum structures such as a proper statement of the optimization problem, 

checkerboard pattern, mesh-dependency and convergence of solution. Recently, the level set 

methods (Osher and Sethian [12]), which were initially proposed for following the 

propagation of fluid interfaces, have been applied into structural topology optimization 

effectively [13], [14]. In this method the boundaries of design domain are implicitly 

described by the zero level set of a higher dimensional function. Therefore, level set method 

(LSM) can easily control various shape and topology changes such as combining, separating 

and developing sharp corners. A binary and piecewise constant level set method have been 

applied into structural topology optimization [15], [16], which increases the convergence 

speed. 

One limitation of the proposed methods is to use the volume constraint alone. So, in this 

paper, the level set approach for topology optimization of continuum structures is presented 

with constraints of displacement and frequency in addition to the current volume constraint. 

The displacement constraint reflects certain functional requirements that the deformation at 

some points needs to be under admissible bound. The frequency constraint comes from the 

design need for a structure to prevent large deformation caused by amplification effects due 

to external incitements such as wind or earthquake etc. In order to show the efficiency of the 

suggested level set method, various examples are presented.  

The subsequent sections are organized as follows. The second section introduces the 

standard level set method. The third section describes the numerical implementation of 

applying the algorithms to compliance minimization with volume, displacement and 

frequency constraints and concludes the search algorithms for the Lagrange multipliers. The 

fourth section represents a series of numerical examples of the selected optimization 

problem. The conclusions are drawn in the last section. 

 

 

2. LEVEL SET METHOD 
 

The level set approach, first presented in [12], has become a powerful tool for calculating 

and analyzing the movement of an interface in two or three dimensions. It has been used in 

many fields, such as image processing, solids modeling, fluid mechanics, and combustion. 

The basic concept of level set methods is defined here to provide essential background for 

later parts. 

 

2.1 Implicit interface representations 

In the level set framework, an interface   (curve or surface) is shown implicitly through a 
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level set function ( )x  and the interface itself is the zero level set. Mathematically, it can be 

defined as: 

 

 ; ( ) 0,x x x D     (1) 

 

where D is a domain which includes  entirely. To describe a structure  , we represent the 

following definition: 

 

( ) 0 : \

( ) 0 :

( ) 0 : \

x x D

x x

x x







   


  
    

 (2) 

 

where D  is a fixed domain which contains all acceptable figures of 

 | , ( ) 0x x D x    . ( ) 0x   and ( ) 0x   show interior and exterior of design 

domain respectively and ( ) 0x   shows the function value on the design domain. 

 

2.2 Level set equation 

Level set methods add dynamics to implicit interfaces. The implicit representation of design 

domain boundary is very flexible and has the capability of merging and splitting boundaries. 

In the other words, with modifying ( )x , the zero level of this function is changed either. 

The implicit function ( )x  is used both to represent the interface and to evolve the 

interface. In the entire evolutionary process of level set function, the value of this function is 

equal to zero on design domain boundary. If we take derivative of the following equation 

with respect to t : 

 
( ) 0.0 ,x x     (3) 

 

We get an advection equation from the chain rule: 

 

. ( ) 0.0v x
t





 


 (4) 

 

where ( )
dx

v x
dt

  is the velocity vector field. Since n








 and . ( )nv v    , we can 

replace equation (4) with below equation: 

 

0.0nv
t





  


 (5) 
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where nv  is the normal velocity vector. Equations (4) and (5) are called level set equations. 

This partial differential equation describes the motion of the interface where ( ) 0x 

under the velocity nv . The main advantage of implicit demonstration is the capability to 

handle topological changes, such as separating and merging of the boundary in a natural 

way.  

It should be noted that in some literature, the description of interior and exterior of the 

design domain in equation. (2) is reversed: 

 

( ) 0 : \

( ) 0 :

( ) 0 : \

x x D

x x

x x







   


  
    

 (6) 

 

So in this case the normal n changes to: 

 

n





 


 (7) 

 

And the level set equation becomes: 

 

0.0nv
t





  


 (8) 

 

 

3. LEVEL SET METHOD FOR TOPOLOGY OPTIMIZATION OF MULTI-

CONSTRAINED PROBLEMS 
 

We want to employ the level set method for solving structural topology optimization 

problems with multiple constraints. The optimization problem is to minimize the compliance 

of a solid structure subject to volume, displacement and frequency constraint. The following 

is the mathematical definition of the problem: 

 

1

1 1

( )
N N

T T p T p

i i i i i i

i i

Minimize C C X u Ku u k u x u k u
 

      (9) 

*

*

( )

: ( ) 0

( ) 0

req

j

n

V X V

subject to d X d

X 




 


 

 (10) 

Ku F  (11) 

min0 1,...,ix or x i N    (12) 
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where  1,..., NX x x  is the vector of element “densities”, with entries of minix x  for a 

void element and 1ix   for a solid element, where i  is the element index, ( )C X  is the 

compliance objective function, u  is the displacement vector, K  is the global stiffness 

matrix, p  is the penalty exponent, jd  is the displacement magnitude of the jth node, n  is 

the nth natural frequency, with 
*d  and 

*  being the imposed constraint values. The 

displacement and the frequency constraints are demonstrated in equation (10). In some 

cases, the natural frequencies may need to be bounded under a certain limit in order to avoid 

from the hazardous frequency range. In such scenarios, the frequency constraint is varies to 
*( ) 0n x    and the later Lagrange function changes accordingly. The binary design 

variable nature is defined in equation (12) where 1 is the upper limit of the design variable 

and minx the lower limit. The design variable ix  indicates the corresponding element‟s 

status, namely presence (solid) or absence (void). In this formulation, elements are not really 

omitted from the structure by “removal” but substituted with very weak material. In this 

case, the design variable represents the element relative density with two candidate values: 1 

indicating element presence, and minx  which is a very small quantity (i.e., 
310

) 

demonstrating element absence. The volume constraint is defined in equation (10) with reqV  

the required volume fraction of final design volume. 

The level-set method (Allaire et al. [13]; Wang et al. [14]) is applied to find a local 

minimum for the optimization problem. The method derives its name from the use of a 

level-set function for illustrating the structure. If the structure occupies some domain   the 

level-set function has the following definition: 

 

(s) 0 :

( ) 0 :

( ) 0 :

if s

s if s

s if s







 


 
  

 (13) 

 

where s  is any point in the design domain, and   is the boundary of. . The following 

evolution equation is applied to update the level-set function and therefore the structure: 

 

0.0nv g
t


 


   


 (14) 

 

where t represents time, ( )v s  and ( )g s  are scalar fields over the design domain, and ω is a 

positive parameter which determines the effect of the term containing g. The field v  

determines geometric movement of structure boundary and is selected according to the 

shape derivative of the objective function. The term including g is a forcing term which 

determines the nucleation of new holes in the structure and is chosen based on the 

topological derivative of objective function. 

If the parameter   is zero, equation (14) is the standard Hamilton-Jacobi evolution 
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equation for a level-set function   under a normal velocity of the boundary ( )v s , taking the 

boundary normal in the outward direction from   (e.g., Osher and Fedkiw [12]). The 

simpler equation without the term involving g is typically used in level-set methods for 

topology optimization (e.g., Allaire et al. [13]; Wang et al. [14]). However, on two 

dimensional problems, this standard evolution equation has the main difficulty that new void 

areas can not be nucleated in the structure (Allaire et al. [13]). Here, the supplementary 

forcing term including g is added following Burger et al. ([17]) to verify that new holes can 

nucleate within the structure during the optimization procedure. 

To form a topology optimization algorithm, the level-set function can be discretized with 

gridpoints centered on the elements of the mesh. If ip  shows the center position of element 

i , then the discretized level-set function   satisfies: 

 

 ; ( ) 0,x x x D     (15) 

 

Then, the discretized level-set function   can be updated to locate a new structure by 

solving equation (14) in a numerical manner.  is initialized as a signed distance function 

and an upwind finite difference scheme is applied so that the evolution equation can be 

solved precisely. Furthermore, the time step for the finite difference scheme is chosen to 

satisfy the CFL stability condition: 

 

max

h
t

v
   (16) 

 

where h  is the minimum distance between neighbor gridpoints within the spatial 

discretization and the maximum is chosen over all gridpoints (e.g., Osher and Fedkiw [12]). 

As stated above, the two scalar fields v  and g  are typically selected according to shape 

and topological sensitivities of the objective function, respectively. In order to satisfy the 

volume constraint, here they are chosen using the shape and topological sensitivities of the 

Lagrangian 

 
21

( ) ( ) ( )
2

K

req reqK
L C x V x V V x V           

 (17) 

 

where 
K  and 

K  are parameters which vary with each iteration K of the optimization 

algorithm. They are updated applying the below approach: 

 

1 1
( )K K

reqK
V x V      

 (18) 

1K K    (19) 

 

where (0,1)  is a constant parameter. This implements the augmented Lagrangian 
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multiplier approach for constrained optimization, as applied for topology optimization with 

the level-set approach by Luo et al. [18]. 

The normal velocity v  is chosen as a descent direction for the Lagrangian L applying its 

shape derivative (e.g., Allaire et al. [13]; Wang et al. [14]). In the case of traction-free 

boundary conditions on the moving boundary, the shape sensitivity of the compliance 

objective ( )C X  is the negative of the strain energy density: (e.g., Allaire et al. [13]): 

 

| T p

i i i i

C
u k u


 


 (20) 

 

The shape sensitivity of the volume ( )V X  is 

 

| 1i

V



 (21) 

 

Using these shape sensitivities, the normal velocity v  within element i  at iteration k of 

the algorithm is 

 

1
| ( )T p K

i i i i reqK

L
v u k u V x V


        

 (22) 

 

According to Burger et al. [17], the forcing term g  should be taken as 

 

( ) Tg sign D L   (23) 

 

where TD L is the topological sensitivity of the Lagrangian L. For compliance minimization, 

nucleating solid areas in the void regions of the design is meaningless because such solid 

areas will not take any load. Hence, holes should only be nucleated in the solid structure. 

 

0

0 0

TD L if
g

if






 


 (24) 

 

The topological sensitivity of the compliance objective function in two dimensions with 

traction-free boundary conditions on the nucleated hole with the unit ball as the model hole 

is (e.g., Allaire et al. [23]). 

 

 

 
  

2
4 ( )

2

T T

T i i i tr iD C u k u u k u
  

  
  


  


 (25) 

 

where ( )T

i tr iu k u  is the finite element approximation to the product ( ) ( )tr tr   where   is 

the stress tensor and   is the strain tensor. In (23), λ and μ are the Lamé constants for the 
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solid material. The topological sensitivity of the volume V(x) when the model hole is the 

unit ball is 

( )TD V x    (26) 

 

Putting these results into the description of the Lagrangian and using (24) gives the 

source term g. 

 

 

 
  

2
4 ( ) ( )

2

T T

T i i i tr i reqg D L u k u u k u V x V



  

  
  

 



      

 (27) 

 

3.1 Augmented Lagrangian function for topology optimization problems with volume, 

displacement and frequency constraints 

In this section, objective function combines with volume, displacement and frequency 

constraints via augmented Lagrangian method: 

 
2

* *

1
( ) ( ) ( )

2

      ( ) ( )

K

req reqK

j n

L C x V x V V x V

d d



   

          

   

 (28) 

 

where   and   are Lagrangian multipliers. 
 
3.1.1 Calculating Lagrangian function sensitivity 

The sensitivity of optimization problem is calculated by forming Lagrangian function 

with constraints of volume, local displacement and natural frequency as follows. 

If the volume term equal to parameter R : 

 
21

( ) ( )
2

K

req reqK
R V x V V x V          

 (29) 

 

Then the sensitivity of the Lagrange function, calculated according to the following 

equation: 

 

j stf vol dis frqn
i

i i i i

dC R

x x x x


      

  
       
   

 (30) 

 

It is seen that the element sensitivity number of the total Lagrange function is a 

combination of the element sensitivities of the mean compliance
stf , volume

vol , the local 

displacement on the jth node
dis , and the nth natural frequency

frq . So the overall 

sensitivity calculation is defined with these four terms. 
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3.1.2 Sensitivity calculation for displacement and frequency constraints 

The element sensitivity for stiffness optimization is commonly calculated as the element 

strain energy density (such as in Bendsøe and Sigmund [6]). The calculation use SIMP 

material model (Bendsøe and Sigmund [24]) that describes the element Young‟s modulus 

through the following power law penalization. 

 
0( ) p

i iE x E x  (31) 

 

where p is the penalty exponent and 
0E  is the Young‟s modulus of solid material, i.e. when

1ix   . According to this material model, the element sensitivity for the mean compliance 

defines as below (Huang and Xie [27]). 

 
1

0

2

p
stf Ti
i i i i

i

pxC
u K u

x





  


 (32) 

 

where iu is the element displacement vector, 
0

iK  is the element stiffness matrix calculated 

with solid material, i.e. using the Young‟s modulus
0E . With the same material model, the 

element sensitivity for the displacement (Huang and Xie [28]) is defined as 

 

1 0jdis p T

i i ij I i

i

d
px u K u

x
 


 


 (33) 

 

where iju  is the element displacement vector under the virtual load. 

In order to prevent the artificial and localized modes, a modified SIMP material model 

(Huang et al. [29]) suggested as  

 

0min min

min

(x ) (1 )
1

p
p p

i i ip

x x
E x x E

x

 
   

 
 (34) 

 

With the help of the above modified SIMP material model, the element sensitivity for the 

natural frequency is calculated as the following. More details of this material model and 

frequency sensitivity calculation are found in (Huang et al. [29]). Alternative material 

models can be also seen in (Pedersen [30]). 

 

1 0 2 0min
, ,

min

11

2 1

frq T pn
i i n i i n i i np

i n

x
u px K M u

x x


 



  
    
  

 (35) 

 

where ,i nu indicates the element eigenvector of the nth mode and 
0

iM is the element mass 

matrix with solid material. Sometimes the neighbor eigenmodes may become multiple by 
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having the identical frequencies. In this sense, BESO methods simply takes the average of 

the sensitivities from the pertinent modes to solve this problem (see Yang et al. [31] or 

section 2.2 of Zuo et al. [32]). 

Therefore, the shape and topology sensitivity of Lagrangian function in combination with 

volume, displacement and frequency defined as below 

 

 

 
  

1 0

1 0 2 0min
, ,

min

2
4 ( ). ( ) ( ( )) ( ( ))

2

1
( ( ( ) ))

11

2 1

T

k

req

p T

i ij I i

T p

i n i i n i i np

n

D L Ae u e u tr Ae u tr e u

V x V

px u K u

x
u px K M u

x

  
  

  

 



 







  



   




 
   

 

 (36) 

1 0

1 0 2 0min
, ,

min

1
( ( ( ) ))

11

2 1

T p k

S i i i req

p T

i ij I i

T p

i n i i n i i np

n

D L u k u V x V

px u K u

x
u px K M u

x





 






    




 
   

 

 (37) 

 

where   and   are the Lagrangian multiplier of displacement and frequency constraint 

respectively. 

 

3.1.3 Determination of lagrange multiplier 

Lagrange multipliers are presented as additional variables of the Lagrange function. They 

need to be determined in order, so that a solution for the optimization problem is obtained. 

  and   are defined through a scaling function of replacement factors d  and   which 

range in a narrow domain [0 , 1). (see Zou et al. [32]). 

 

, [0,1)
1

, [0,1)
1

d
j j

d

j k





 




 



 


 


 (38) 

 

In the above description, the Lagrange multipliers are represented in an entire range with 

the replacement factors d  and  , e.g. zero d  leads j  to zero and d  approaching 1 

pushes j  to infinity. Increasing or decreasing the Lagrange multipliers can be achieved by 
increasing or decreasing the relevant replacement factors. This way, the determination of 
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Lagrange multipliers is realized by the searching for replacement factors within [0, 1) with 

suitable increments in programming implementation. 

 

3.1.4 Satisfaction of displacement and frequency constraint 

The volume constraint and the solution convergence are examined for a decision whether to 

finish the optimization process at the end of each iterative step. Furthermore, for the present 

problem, the satisfaction of the additional constraints such as displacement and frequency is 

checked with the average through the last iterative steps. 

 

*

*

, 11

, 11

1
( ) 0

1
( ) 0

N

j q ii

N

n q ii

d d
N

N
 

 

 

 

 




 (39) 

 

where q is the current iterative step, and in this paper N is chosen to be 10 so that the 

additional constraints are satisfied in the last ten designs. The iterative process for 

description of the update scheme of the Lagrange multipliers is summarized into the steps 

shown in the flowchart of Fig. 1. (see Zou et al. [32]). 

 

 
note : the tolerance t and increment e

can be prescribed as smallnumbers, e.g.1%
 

Figure 1. Flowchart of the lagrange multipliers determination 
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4. NUMERICAL EXAMPLES 
 

Numerical examples are illustrated in this section  using the suggested method described in 

final section. In this section, by examining several results in two dimensional problems, the 

validation of the suggested approach is affirmed. The finite element analysis is based on 

“ersatz material‟‟ scheme [13], which fills the void areas with one weak material ( 2

min 10x  ). 

All numerical examples have following data, Young‟s modulus is assumed 1E GPa  and 

mass density is supposed 
3

8000
kg

m
  , Poisson‟ ratio for materials is assumed 0.3. 

Lagrangian multiplier for volume is 0.01  , penalty multiplier is 1000   and penalty 

exponent is assumed 3p  . 

 

4.1 Cantilever beam 

Fig. 2 illustrates the design domain, loading and boundary condition of a cantilever beam. 

The boundary of the left side is fixed, and a beam is subject to vertical concentrated force 

F=100N at the middle of its right free side. The size of the design domain is 80×40 with a 

squared mesh size of 1×1 and the volume fraction is 30%. 

 

 
Figure 2. Design domain, loading and boundary condition of cantilever beam 

 

Additional constraints on the vertical displacement Ad  at point A and the fundamental 

frequency 1  are involved in the optimization of the cantilever beam. The additional 

constraints are combined into the following set: 
4

1 /1.9 10 rad s    and 10.5A mmd  . 

The evolution procedure of the optimal topology is shown in Fig. 3 while the corresponding 

resulted performance is given in Table 1. Fig. 4 illustrates the evolutionary histories for the 

mean compliance, local displacement, fundamental frequency and volume fraction 

respectively. The convergence in the mean compliance satisfied during the last iterative 

steps for the optimization problem with multiple constraints. 
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Table 1: Summary of optimal design under volume, displacement and frequency constraints 

Constraint Compliance (Nmm) Local displacement (mm) Natural frequency (rad/s) 
4

1
/1.9 10

10.5
A

rad s

mmd




 


 1094.14  10.49 4

1.917 10


  

 

 

 
(a) Initial design   (b) Step 10    (c) Step 20   

 
(d) Step 30   (e) Step 40     (f) Step 50   

 
(g) Final design 

Figure 3. The evolution process of optimal design for a cantilever beam 

 

 

 
(a)            (b) 
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(c)          (d) 

Figure 4. Evolutionary optimization histories for the optimal designs half wheel beam: (a) mean 

compliance; (b) local displacement; (c) fundamental frequency; (d) volume fraction 

 

4.2 Half wheel beam 

In the next example we consider a half wheel beam. The design domain, loading and 

boundary condition of this type of structure are shown in Fig. 5. The beam is simply 

supported at the lower corners and vertically loaded at the middle point of the upper edge. 

The roller-supported corner is denoted point A where a horizontal local displacement 

constraint is to be applied. The size of the design domain is 70×70 with a squared mesh size 

of 1×1 and the volume fraction is 30%.  
Additional constraints on the horizontal displacement Ad  at point A and the fundamental 

frequency 1  are involved in the optimization of the half wheel beam. The additional 

constraints are combined into the following set: 
3

1 /3.3 10 rad s    and 0.88A mmd  . 

 

 
Figure 5. Design domain, loading and boundary condition of half wheel beam 
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(a) Initial design    (b) Step 10    (c) Step 20 

 
(d) Step 30    (e) Step 45     (f) Step 50 

 
(g) Final design 

Figure 6. The evolution process of optimal design for a cantilever beam 

 

 

 
(a)            (b) 
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(c)            (d) 

Figure 7. Evolutionary optimization histories for the optimal designs half wheel beam: (a) mean 

compliance; (b) local displacement; (c) fundamental frequency; (d) volume fraction 

 
Table 2: Summary of optimal design under volume, displacement and frequency constraints 

Constraint Compliance (Nmm) Local displacement (mm) Natural frequency (rad/s) 
3

1
/3.3 10

0.9
A

rad s

mmd




 


 122.23  0.8914 3

3.334 10


  

 

4.3. Bridge type structure 

As the final example, we want to consider the bridge type structure. The bridge is pinned at 

both lower corners and subject to a concentrated force 100F N  at the center of the lower 

edge. The design domain, loading and boundary condition of this type of structure are 

shown in Fig. 8. The center of lower edge is denoted point C where a vertical local 

displacement constraint is to be applied. The size of the design domain is 80×40 with a 

squared mesh size of 1×1 and the volume fraction is 30%. 

Additional constraints on the vertical displacement cd  at point C and the fundamental 

frequency 1  are included in the optimization of the bridge type structure. The additional 

constraints are combined into the following set: 
3

1 /1.6 10 rad s    and 1.5A mmd  . 

 

 
Figure 8. design domain, loading and boundary condition of bridge type structure 
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(a) Initial design    (b) Step 10    (c) Step 25 

 
(d) Step 35     (e) Step 40     (f) Step 50 

 
(g) Final design 

Figure 9. The evolution process of optimal design for a cantilever beam 

 

 

 
(a)             (b) 
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(c)              (d) 

Figure 10. Evolutionary optimization histories for the optimal designs half wheel beam: (a) mean 

compliance; (b) local displacement; (c) fundamental frequency; (d) volume fraction 

 
Table 3: Summary of optimal design under volume, displacement and frequency constraints 

Constraint Compliance (Nmm) Local displacement (mm) Natural frequency (rad/s) 
3

1
/1.6 10

1.5
A

rad s

mmd




 


 149.57  1.4957 3

1.631 10


  

 

 

5. CONCLUSION 
 

This paper introduces the level set method handling multiple constraints such as 

displacement and frequency besides the common volume constraint in topology 

optimization of continuum structures. The Lagrange function is formed as a relaxed 

objective function that may contain any number of additional constraints. The Lagrange 

multipliers are determined by a search strategy using the sensitivities. In order to prevent 

searching in an infinite range, replacement factors within a finite range are suggested to 

show the Lagrange multipliers in the entire range through a scaling function. To evolve the 

topological design, an update scheme for element design variables and the additional 

Lagrange multipliers is applied through optimality criteria according to the relaxed objective 
function. Following the proposed general algorithms for level set method with multiple 

constraints, an optimization problem is constructed for minimization of compliance subject 

to additional constraints of local displacements and natural frequencies besides the common 

volume constraint. Therefore, element sensitivities of objective function and additional 

constraints are calculated. Lagrange multiplier update is determined following a search 

strategy based on the element sensitivities. To show the efficiency of proposed method, 

several numerical examples of 2D structures are examined for this type of multiple 
constraint optimization problem. Convergent solutions are obtained for compliance 

minimization that satisfies all the constraints. These examples clearly represent the 

effectiveness of the proposed method. 
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