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ABSTRACT 
 

Passive systems are preferred tools for seismic control of buildings challenged by 

probabilistic nature of the input excitation. However, other types of uncertainty still exist in 

parameters of the control device even when optimally tuned. The present work concerns 

optimal design of multiple-tuned-mass-damper embedded on a shear building by a number 

of meta-heuristics. They include well-known genetic algorithm and particle swarm 

optimization as well as more recent gray wolf optimizer and its hybrid method embedding 

swarm intelligence. The study is two-fold: first, optimal designs by different meta-heuristics 

are compared concerning their reduction in structural seismic responses; second, the effect 

of uncertainty in Multi-Tuned-Mass-Damper parameters, is studied offering new reliability-

based curves. Monte Carlo Simulation is employed to evaluate failure probabilities. A 

variety of structural responses are assessed against seismic excitation including maximal 

displacement, velocity and acceleration. It is declared that the best algorithm for efficiency 

and effectiveness has not coincided the best based on the reliability traces. Such traces also 

show that in a specific range of limit-states, algorithm selection has a serious effect on the 

reliability results. It was found even more than 35% and depends on the response type.   
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1. INTRODUCTION 
 

Reduction of structural responses due to seismic excitation can be favored by passive control 

of buildings. Such a control strategy relies on the embedded devices to the structural system 
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that perform their tasks without the need for any external commands or energy sources 

during the earthquake. Tuned Mass Damper, TMD denotes one of the most popular devices 

in the category of passive seismic control; studied by several researchers [1–4].  

Multiple Tuned Mass Damper, MTMD has already been introduced by investigators to 

efficiently face distributed-frequency excitations in the broad-band domain exhibiting 

superior performance over single TMD with similar mass. Single dampers may amplify 

higher modes on the consequence of the interference effect where coupling exists between 

the main mode and higher modes. Den Hartog has revealed pioneering research on 

optimizing TMD for an undamped equivalent Single Degree Of Freedom (SDOF) structure 

[5]. Jangid offered a methodology to find efficient parameters of MTMDs in an undamped 

structure subjected to harmonic excitation [6]. The method minimized displacements of the 

main system by means of a numerical technique. Wu and Chen [7] proposed a design 

procedure classifying MTMD into several groups, each of them covering a number of 

distributed dampers at different distinct levels. Hoang and Warnitchai [8] proposed a method 

for design of MTMD to minimize vibration response of linear Multi-Degrees of Freedom 

(MDOF) structures applying a numerical procedure.  

Optimization of TMD parameters has been an active research field in recent decades 

[4,9–12]. In this regard, non-gradient based optimization methods have received more 

interest over conventional MP algorithms [13–15]. Meta-heuristics constitute a vast subset 

of zero-order methods; usually inspired by natural phenomena [16]. Some of the most 

popular ones are Genetic Algorithm [17], Simulated Annealing [18], Particle Swarm 

Optimization [19], Harmony Search [20], Charged System Search [21], Artificial Immune 

Systems [22], Colliding Bodies Optimization [23] and Grey Wolf Optimizer [24]. Hybrid 

algorithms are also offered for better performance in specific problems [25–29].  

Another important issue in seismic control by TMD, is the effect of uncertainties on the 

desired performance. It is concerned here-in-after; however, several works have applied 

optimization regardless of this issue [6–9,29]. Since the structural model is more 

complicated than can be practically assessed by symbolic relationships; sampling methods 

are suited for this purpose [30]. In the present work, Monte Carlo Simulation, MCS is 

employed as it is well-studied and trusted in literature. In addition, a novel series of 

reliability curves are offered to compare optimal designs of TMD by different optimization 

methods including Genetic Algorithm and Particle Swarm Optimization as famous 

representatives of evolutionary computing and swarm intelligence; in addition to Grey Wolf 

Optimizer as a more recent algorithm and its hybrid variant with Particle Swarm; 

called PSOGWO.  The results are derived on a literature benchmark structure.  

 

 

2. GOVERNING EQUATION OF MOTION 
 

Consider a  building model under base excitation of . Each damper of MTMD 

with its stiffness and damping is modeled in parallel on the last story of the structure.  
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Figure 1. Schematic MTMD embedded on a model, depicted for sample case of  

 

Assuming just one horizontal degree of freedom for every damper in MTMD, the entire 

model will have  degrees of freedom.  Consequently, the equation of motion is given 

in the matrix form by: 
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The scalar base-excitation on the effective force vector is applied using the influence 

vector;  multiplied by the mass matrix; . The corresponding total stiffness and damping 

matrices are denoted by  and C, respectively. The stiffness matrix has the following 

pattern: 
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The damping matrix has the same pattern as the stiffness matrix; while the mass matrix is 

diagonal. Such an equation of motion is solved under dynamic time-history excitation by the 

Wilson-theta’s numerical analysis method. 

 

 

3. OPTIMIZATION PROBLEM 
 

The MTMD optimization under earthquake excitation is stated using a function of essential 

parameters in the equation of motion as follows. 

 

Find: 

 

 
T

1 1X      , ,  ..., ,d d d d

n nk c k c  (3) 

 

to minimize: 
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The cost function  denotes maximum displacement of the structural model with respect 

to the ground within the duration of oscillation:  .  stands for the number of TMD’s 

embedded at the roof level. The damping and the stiffness of the ith TMD are denoted by 

and , respectively.  

 

 

4. UTILIZED ALGORITHMS 
 

4.1 Particle swarm optimization 

Particle Swarm Optimization, PSO, is a pioneering meta-heuristic in the category of 

directional search [31]; applied to several engineering problems since introduced by 

Kennedy and Eberhart [19]. It is simulated by movements of some artificial birds or 

particles in a D-dimensional search space. Suppose  and 

 denote the current position of the bird and its best over 

experienced locations of it up to the current iteration, , respectively. The latter simulates 

cognitive behavior of birds while the social term utilizes position of the best bird in the 

entire swarm; denoted by . Employing the time step of unity for computer simulation, 
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the velocity term will represent changing in the position of each bird by .  

Accordingly, PSO is presented via the following relations. 

 

   1

1 1 , 2 2 ,         l l l l

i i Pbest i i Gbest i iV wV c r X X c r X X       (6) 

1 1  l l l

i i iX X V    (7) 

 

The first equation emanated from the velocity vector includes three parts. The first part 

indicates inertia term regarding the previous velocity direction, the second or cognitive part, 

implies the personal experience of the particle and the third is the social term representing 

the cooperation among all particles. According to such PSO relations of particle movements, 

,  and  are the corresponding control parameters in addition to the population size and 

number of iterations (or function calls).  and  are random numbers uniformly generated 

between zero and one.  

 

4.2 Genetic algorithm 

Since formally introduced by Holland [17], several variants of the Genetic Algorithm are 

extensively used in finding optimal solutions for computational problems. In terms of their 

similarity to the biological reproduction processes, genetic algorithms are recognized as a 

major subset of evolutionary computation. Inherent randomness in many genetic operators is 

akin to evolution.  

Any genetic algorithm is normally initiated with a random initial population deemed as 

including possible solutions to the problem. The method works with encoded/genotypic 

space that enables special explorative behavior [32]. It employs mutation and crossover 

thresholds as control parameters to effectively balance between the exploration and 

exploitation. GA operators include fitness-based selection, crossover and mutation in every 

new generation until the terminating iteration is reached. The method of encoding candidate 

solutions into chromosomes or what the fitness function is actually measuring, affects the 

ultimate efficiency of the genetic algorithm, to a large extent [33]. 

 

4.3 Grey wolf optimizer 

Simulating behavior of grey wolves in catching their prey, Grey Wolf Optimizer, GWO, is 

introduced [24]; in which the search agents are distinguished via different kinds.  Grey 

wolves’ dominant hierarchy style-of-life is such that each pack of wolves is led by a leader 

entitled Alpha. The alpha’s direct subordinate, called Beta is the senior counselor of alpha in 

making critical decisions. Beta is also responsible for successful publication of alpha’s 

commands throughout the pack and providing alpha some helpful feedback. The lowest 

order among grey wolves belongs to Omegas which are the last to eat the prey. The 

remaining wolves are called Delta who are responsible for hunting, caretaking, scouting and 

so forth. Such a hierarchy of dominance is depicted in Fig. 2. 
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Figure 2. Social hierarchy of the grey wolves 

 

GWO is a population-based algorithm to iterate for times. It searches the design space 

via three stages: encircling, hunting, attacking and searching for the prey. The algorithm 

assorts fitness of solutions based on the concept of grey wolves’ pack hierarchy, i.e. the 

fittest is considered the alpha while the next two best solutions are beta and delta, 

respectively. Omega is the name given to the remaining solutions. The method simulates the 

encircling stage during the hunting process by the wolves via the following relation; given 

for every jth component [24]: 

 
   ( 1) ( )

,

ll l

j j j p j j jX X C X X t A     (8) 

 

At every iteration l, and denote the next candidate position of the wolf and its 

current position, respectively. The vector stands for the prey position.  and  are 

auxiliary vectors in the aforementioned relations; given by: 

 

(2 1)jA rand a   (9) 

2jC rand  (10) 

 

where  stands for a random generator function in range 0 to 1. The parameter  plays 

the role of a decreasing factor as   increases to its prescribed maximum; . 
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Based on the position of the pray ( ), the grey wolf’s position ( ) is updated. The 

updated position of the best grey wolf can be achieved through the adjustment of the vectors 

 and . Fig. 3 shows  position vectors and the next possible positions of the grey wolf. 

 

 
Figure 3. Wolves position vectors and alternatives in two-dimensions 

 

In the hunting stage, information about position of the prey is obtained by cooperative 

work of the alpha, beta, and delta wolves. Given the fact that these wolves are 

representatives of the best three solutions of the problem, omega (the remaining) wolves’ 

will be positioned, subsequently. Such new positions of the alpha, beta, and delta about the 

prey are given by ,  and, . 
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Equation 13, shows estimated position of the prey so that omega wolves can be directed 

around it.  

In attacking the prey, i.e. when  each wolf updates its position between its current 

position and the position of the prey. At the time of searching for the prey, the alpha, beta, and 

delta may follow divergent directions but they come together when attacking the prey.  
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It is also needed to prevent getting trap in local optima by letting the wolves move away 

from the prey; that occurs in the case of . 

 

4.4 Hybridization of particle swarm optimization and grey wolf optimizer  

Inspired originally by the simulation of the social behavior of animals searching for food and 

hunting, Particle Swarm Optimization with exploitation and Grey Wolf Optimizer are 

hybridized and merged using a low-level co-evolutionary mixed hybrid to form the Hybrid  

Particle Swarm Optimization and Grey Wolf Optimizer (PSOGWO). The modified set of 

governing equations over the search space in order to simulate simultaneous PSO and GWO 

methods are introduced and updated as follows regarding the position vector and space 

updating velocity variants [34]. 
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i i iX X V    (16) 

 

 

5. RELIABILITY ASSESMENT 
 

Several uncertainties exist in structural parameters including construction materials, external 

loads, geometry, etc. Due to structural reliability theory, it is now possible to formulate such 

uncertainties and consider them in the design. The reliability analysis methods can be 

distinguished in some major categories; one assumes symbolic relations for marginal 

functions while the other is most suitable for non-symbolic evaluations of failure 

probabilities. 

First Order / Second Order Reliability Methods (FORM/SORM) fall in the first category 

supported by considerable theoretical relations. A high-order function may be evaluated by 

series expansion to be suited for either FORM or SORM; even when applicable in some 

simple models they may bring about a degree of approximation.  

The second category; however, relies on sampling of design points to declare limit-state 

function. The most famous procedure in this class is Monte Carlo Simulation. MCS can be 

easily programmed for implicit function evaluation and behaves like simulation of an 

experiment with random numbers. First, random numbers are generated with desirable (e.g. 

normal) distribution to simulate uncertainty in the parameters of the problem. Then, every 

such sample constitutes a design point that can be further evaluated by structural analysis to 

see whether it passes the limits or not. Probability density function is given here as [35–37]:  
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where x,  and are random variables, mean and standard deviation, respectively. In order to 

calculate the failure probability of a system by MCS, the failure limit should be declared a 

priori. Then, MCS is performed for each sample to declare whether it has failed or not. 

Dividing the number of failed samples;  by the total amount of samples;  the probability 

of failure;  is resulted by: 

 

f
f

N
P

N
  (18) 

 

The reliability value for the corresponding failure probability is defined here as: 

 

1r fP P   (19) 

 

 

6. NUMERICAL RESULTS 
 

The ten-story shear building model of Fig. 4 is considered as a case study; already addressed 

in literature [38]. Mass, damping and stiffness of each story are taken 360000kg, 6.2MNs/m 

and 650MN/m, respectively. The structure is subjected to the accelerogram of Fig. 5. A 

program has been developed to analyze the shear frame with a control system employing the 

Wilson-Theta’s numerical procedure. It is verified by the results presented in literature [38] 

as reported in Table 1. The task has been accomplished on a platform with Core 2 Duo CPU; 

2.66 GHz. Consequently, critical story responses are evaluated for the controlled and 

uncontrolled conditions. 

The control system considered for this structure is an MTMD consisting of 10 TMD’s 

embedded in parallel distribution on the top level of the building. Stiffness and damping 

parameters of each TMD are unknowns; then for 10 TMD’s, there are 20 design variables 

for this optimization problem. 
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Figure 4. 10-Story shear building with MTMD at the roof level 

 

 

 
Figure 5. Time-history record for El-Centro 1940 Earthquake 
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Table 1: Validation of the provided analysis program with literature results 

Story  Displacements (cm) 

 With TMD Without TMD 

 Hadi &Arfiadi 1998 [38] Present study Hadi &Arfiadi 1998 [38] Present study 

1 1.90 1.87 3.10 3.05 

2 3.70 3.65 6.00 5.96 

3 5.80 5.30 8.70 8.67 

4 6.80 6.79 11.20 11.13 

5 8.20 8.12 13.30 13.29 

6 9.40 9.34 15.10 15.11 

7 10.40 10.39 16.60 16.58 

8 11.30 11.26 17.70 17.68 

9 11.90 11.87 18.40 18.42 

10 12.20 12.19 18.80 18.79 

 
In order to find the characteristics of the control system, GA, PSO, GWO and PSOGWO 

are considered as solution algorithms. Table 2 reveals the applied control parameters for 

each algorithm. The objective is to minimize lateral displacements of the frame under 

prescribed seismic excitation. Mass ratio of the control system is fixed to 3% of the building 

mass. Bounds on  and  values, are given in Table 3. All the algorithms are run up to 

500 iterations; and the best achieved objective values are demonstrated in Fig. 6. It is 

observed that the highest convergence rate belongs to GWO while PSO has obtained the best 

final cost as the objective function. PSOGWO has revealed similar convergence to GWO but 

GA has shown the lowest convergence rate. Further statistical results are reported in Table 4. 

 
Table 2: Applied control parameters  

Algorithm 
Number of 

Iterations 

Population 

size 

Inertial 

Weight 

Cognitive  

Parameter C1 

Social  

Parameter C2 

Crossover 

Rate 

Mutation 

Rate 

GA 500 25 - - - 1.0 0.5 

PSO 500 25 1.0 1.5 2.0 - - 

GWO 500 30 - - - - - 

PSOGWO 500 30 1.0 0.5 0.5 - - 

 
Table 3: Upper bounds on stiffness and damping of TMD’s 

TMD property limit 

 4000  

 1000  
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Figure 6. Convergence curves of  GA, GWO, PSO and PSOGWO for MTMD design 

 

 
Figure 7. Absolute uncontrolled and controlled displacements by different algorithms 
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Table 4: Statistical results of the treated algorithms for MTMD design 

Method Best cost Mean cost COV 

GA 0.118700 0.127390 0.014898 

PSO 0.117262 0.120091 0.006290 

GWO 0.118986 0.121265 0.008600 

PSOGWO 0.118754 0.121592 0.008398 

* COV: Coefficient Of Variation 

 

GA, GWO, and PSOGWO optimization algorithms have different convergence rates but 

not so different final costs.  The employed PSO has exhibited better mean and best results 

with proper COV compared to the others.   

Comparison of resulted maximum story sways in Fig. 7, reveals considerable reduction in 

the structural response for the optimally controlled model with respect to the uncontrolled 

structure. The greatest value of such a reduction has occurred at the roof level; meanwhile, it 

is realized that in this example PSO has been superior to the others. 

The next issue to investigate is how uncertainties may affect such optimal results. 

Reliability analysis is inevitable to address this question. The structural reliability is derived 

for every designed control system by Monte Carlo Simulation (MCS); in which random 

parameters are generated due to a prescribed probability distribution.  

In this regard, stiffness and damping of MTMD in the employed control system are 

assumed to be random variables obeying continuous normal distribution. For every 

uncertain parameter 5000 samples are generated; each one being a new model of structural 

control system with the corresponding seismic displacement, acceleration and velocity 

responses.  

Moreover, in order to calculate Pr, several structural models are sampled and checked for 

passing the limit-state against the aforementioned criteria. Then, reliability of the structure in 

every its specific response is evaluated by Eq. (19). According to Table 5, the range of 

ultimate limit-states for all the structural responses is taken a value between the maximum 

uncontrolled structural displacement , Velocity  and acceleration as the upper bounds 

and fifty percent of them as the corresponding lower bounds. The uncontrolled responses are 

obtained in this case study as ,  and . 

 
Table 5: Applied limit-state bounds on the structural responses 

Response type 
Maximum response of the 

uncontrolled Structure 

Ultimate limit-State bound 

Lower bound Upper bound 

Displacement D 0.5 D D 

Velocity V 0.5 V V 

Acceleration A 0.5 A A 

 

To assess reliability of optimal designs with respect to critical displacement, velocity or 
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acceleration responses, a novel set of reliability traces, is offered. Any point in the curve of 

each specific structural response is generated by calculating the reliability due to MCS for a 

certain percentage of maximum response within its range. The curve is completed when all 

its points are generated by several MCS operations for the optimal design by each algorithm. 

The parameter on the horizontal axis should be discretized to a finite number of points 

instead of treating it as a continuous variable with infinite (impractical) values. It is 

inevitable in the present structural problem, in the absence of a symbolic relation for the 

limit-state function; as it should be distinctly evaluated for every MCS sample (structural 

model).  

Fig. 8 shows such a trace regarding displacement response in the range 0.5D to D. The 

reliability curves for optimal designs by all 4 treated algorithms are plotted vs. each other, 

for the sake of better comparison. Although GA’s best design has not revealed the lowest 

cost, its reliability trace stands over the others (PSO, GWO and PSOGWO) in most of 

displacement points. For any such points, the reliability curve of PSOGWO has been lower 

than the others while those of PSO and GWO are closer to each other.  

 

 
Figure 8. Reliability traces for different optimal designs vs. displacement response 

 

 
Figure 9. Reliability traces for different optimal designs vs. velocity response 



A RELIABILITY APPROACH TO COMPARE OPTIMAL SEISMIC DESIGNS ... 

 

567 

 
Figure 10. Reliability traces for different optimal designs vs. acceleration response  

 

Similar trend is observed for reliability traces vs. the velocity response in Fig. 9. It is 

while for acceleration response in Fig. 10, GWO has revealed closer curve to PSOGWO 

than the others.  Again, it is declared that the best algorithm regarding the optimality of final 

solution has not coincided with the best regarding reliability preference. 

 
Table 6: Reliability variation vs. limit-state variation for the treated algorithms 

 
limit-State 

Range 

Reliability Reliability 

variation  GA PSO GWO  PSOGWO 

Displacement 0.63D-0.81D 
reliabilities at 0.63D 

0.13-0.35 
0.55 0.42 0.20 0.20 

Velocity  0.57V-0.75V 
reliabilities at 0.57V 

0.11-0.36 
0.76 0.65 0.55 0.40 

Acceleration  0.58A-0.75A 
reliabilities at 0.62A 

0.04-0.26 
0.87 0.83 0.53 0.53 

 
Table 7: Maximal absolute roof displacement, velocity and acceleration for the uncontrolled and 

optimally controlled structure by GA 

Case  Displacement (cm) Velocity (cm/s) Acceleration (cm/s2) 

Controlled  11.87 0.79 5.94 

Uncontrolled  18.79 1.44 9.73 

Reduction (%) 37 45 39 

 

Furthermore, such traces show that in a specific range of limit-states, algorithm selection 

has a serious effect on the reliability results. For example, at the range of (0.63D-0.81D) in 

Fig. 8, GA illustrates the best result, with a maximum at 0.81D. However, outside of this 

range, all algorithms approximately have closer results. It can also be noticed that the 

maximum difference between algorithm reliabilities has occurred at about 0.63D. For this 

point, GA reliability is 0.13 higher than PSO, 0.35 more than GWO and PSOGWO. Results 

of such a test for velocity and acceleration have been reported in Table 6. In addition, it 
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reveals that the designed optimized MTMD decreases the lateral displacement of the highest 

elevation of the building by 37% (Table 7). Such a reduction is obtained 45% and 39% for 

velocity and acceleration responses, respectively.  

 

 

7. CONCLUSION 
 

Optimal design of MTMD for passive control of building structure against dynamic base-

excitation was treated by a number of meta-heuristics; i.e. GA as an evolutionary method, 

PSO that is a swarm algorithm and GWO being a population-based method with different 

kinds of search agents. PSOGWO was also employed as a hybrid combination of the last 

two. In this type of optimization that each of 10 TMD’s was tuned by the algorithm; it was 

observed that the employed PSO can reveal lower cost with respect to the others. GA has the 

lowest convergence rate while GWO and PSOGWO have stood on the middle ranks for the 

applied set of control parameters.  

The optimal designs were further subjected to a reliability study. Consequently, for every 

such design, sampling by MCS was performed over the discretized response axis; once for 

displacement response and the other times for velocity and acceleration. In this regard, a 

novel set of curves was offered and utilized to compare the aforementioned designs from the 

reliability point of view.   

According to the results of this study, it was found that not only the most effective 

algorithm may not reveal the most reliable design but also the first rank in the reliability can 

be associated with the less efficient optimization method. In our study, the first rank belongs 

to GA among the others; that exhibited a lower convergence rate but higher reliability value 

(lower failure probability calculated by MCS) over a vast range of the discretized limit-state 

parameter. Such a rank was stable for acceleration and velocity responses in addition to 

displacement. Hence, it cannot be recommended to suppress reliability study in the design of 

such a passive control system. 

Due to specific results of this case study, maximum superiority of GA in Pr over the 

others were observed (0.13-0.35), (0.11-0.36) and (0.04-0.26) for the displacement limit-

state in the range of (0.63D-0.81D), for the velocity within (0.57V-0.75V), and for the 

acceleration within (0.58A-0.75A), respectively. Outside such range, the reliability 

difference was lower between optimal designs by GA, PSO, GWO and PSOGWO. In 

another word, the condition that how much can rely on the effectiveness of optimal designs 

for reliability, depends on the range of the parameter in hand regarding the proposed 

reliability curves. Applying wider range of earthquake records to more structural models 

with a variety of optimization algorithms can, of-course, be a future scope of research. 
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