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ABSTRACT 
 

This paper proposes a GA-based reduced search space technique (GA-RSS) for the optimal 

design of steel moment frames. It tries to reduce the computation time by focusing the 

search around the boundaries of the constraints, using a ranking-based constraint handling to 

enhance the efficiency of the algorithm. This attempt to reduce the search space is due to the 

fact that in most optimization problems the optimal solution lies on or near the boundaries of 

the feasible region. All the analyses/optimization steps have been implemented in MATLAB 

and the method has been validated by optimizing three moment-frame benchmark problems. 

According to the results, the algorithm performs fit and needs relatively fewer analyses than 

other metaheuristic algorithms to reach a global optimum solution. 
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1. INTRODUCTION 
 

Since steel moment frames are vital practical issues in engineering design problems, their 

safe and optimal design is very important because their design variables and constraints are 

numerous and the search space is large [1, 2]. Design variables are discrete in nature because 

they are selected from a list of standard w-shaped beam and column sections [3, 4].  

Major optimization algorithms are either classical or heuristic/metaheuristic. 

Mathematical programming (classical), are not suitable for solving large engineering 

problems because they start the search from a single selected continuous point causing their 
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final solution to get trapped in a local optimum which depends on that initial point. Besides, 

since they need the gradient information of the objective function/constraints and thus, a 

large problem size makes reaching for the optimal solution difficult [1, 5]. However, 

metaheuristic algorithms including Genetic Algorithm (GA) [6-9], Ant Colony Optimization 

algorithm (ACO) [10, 11], Particle Swarm Optimization (PSO) [12], Harmony Search (HS) 

[13-15], Teaching–Learning-Based Optimization (TLBO) [16], Big Bang-Big Crunch (BB-

BC) [17], Shuffled Shepherd Optimization Algorithm (SSOA) [18],¬¬ Billiards-inspired 

Optimization Algorithm (BOA) [19], hybrid algorithms [1, 5] and so on are random search-

based; therefore, they are more suitable for moment frame optimization problems because 

they can handle discrete variable type problems as well.  

Many researchers have employed meta-heuristic algorithms for optimal design of steel 

frame structures. Kripakaran et al. [20] used an alternative method, combined with the 

genetic algorithm, to carry out the optimal design of steel moment resisting frames. Kaveh 

and Zakian [21] employed charged system search (CSS) and improved harmony search 

algorithms in order to design of steel frames. Kaveh and Bakhshpoori [22] performed 

optimum design of two-dimensional steel frames by means of Cuckoo search (CS) algorithm 

with Levy flights. Flager et al. [23] presented the Fully Constrained Design (FCD) method 

for discrete sizing optimization of steel structures. Kaveh et al. [24] employed the non-

dominated sorting genetic algorithm (NSGA-II) to minimize construction cost and reducing 

seismic damage of steel frame structures. Mahallati Rayeni et al. [25] developed an 

improved Multi-Objective Evolutionary Algorithm (IMOEA) in order to design planar steel 

frames. Kaveh and Ghazaan [26] performed optimum seismic design of 3D irregular steel 

frames using four metaheuristic algorithms. Also in the literature [27], seven population-

based meta-heuristic algorithms were employed for size optimization of two-dimensional 

steel frame structures. 

Since metaheuristic algorithms need numerous objective function/constraint evaluations, 

some researchers have tried, through a number of studies, to reduce the required 

computational time [8, 28, 29]. This paper has used a novel search-space reduction 

technique and shown, by comparing its results with those of other similar researches, that it 

is quite efficient in finding the problem’s optimal solution. 

 

 

2. FRAME OPTIMIZATION PROBLEMS 
 

Optimization of steel moment frames, with the following formulation, is aimed to yield a 

least-weight structure design so that the constraints are satisfied: 

 

 (1) 

 

where ,  and  are the material density, sectional area, and length of member i, 

respectively, and n is the number of members. The AISC frame design is based on the 

following constraints [30]: 

Member normalized tension: 
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 (2) 

 

Maximum normalized lateral displacement: 

 

 (3) 

 

Inter-story displacements: 

 

 (4) 

 

where  are the existing and allowable stress in member i, respectively, R is the 

maximum allowable drift,  is the structure’s maximum lateral displacement, H is the total 

structure height,  is the inter-story drift,  is the height of story j,  is the allowable inter-

story drift index (= 1/300 according to AISC) and  is the number of stories. The LRFD 

interaction constraints relationships are as follows: 

 

 (5) 

 
(6) 

 

where  and  are the required and nominal axial resistance (tension or compression), 

respectively,  is the resistance factor (= 0.9 for tension and 0.85 for compression), ( , 

) and ( , ) are the required and nominal flexural strength around the x and y 

axes, respectively ( = 0 for 2D frames), and (= 0.9) is the flexural strength reduction 

factor. The effective length factor k is needed to find the Euler stresses; it equals 1 for beams 

and braced members, but for columns, use is made of the following approximate relation 

with an accuracy of -1%  to + 2% of the exact solution [31]: 

 

 (7) 

 

where  and  are the column stiffness ratios at both ends. 

 

 

3. GENETIC ALGORITHM 
 

Genetic algorithms are metaheuristic methods that work based on the “natural evolution” 

mechanism and “survival of the fittest” principle and use such operators as the mutation and 

crossover inspired by the biological evolution [28, 32]. Since they are inherently developed 
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to solve unconstrained problems, a challenge in their application is how to handle constraints 

for which many methods have been proposed by different researchers [33-36]. 

 

3.1. Constraint treatment  

To control and handle constraints in optimization problems, this paper has used the extended 

balanced ranking method (E-BRM) [37] the explanation of which first requires the definition 

of the general form of a constrained optimization problem as follows: 

 

 

 (8) 

 

where vector  is a solution with  design variable,  is the objective function to be 

optimized,  and  are the unequal and equal constraints, respectively,  and  

are, respectively, the lower and upper bounds of variable i (from the set of design variables) 

 is the number of unequal constraints and  is the total number of constraints; feasible 

solutions (FS) are those that satisfy these constraints and infeasible solutions (IS) refer to 

those that do not do so [37]. 

The constraint violation is found as follows: 

 

 (9) 

 

where ε is a small value used to convert equal constraints into unequal ones [37]. 

The penalty function for infeasible solutions is [37]: 

 

 (10) 

 

where β is defined as follows: 

 

 (11) 

 

where  is a penalty-balancing function for non-violated constraints to direct the search 

towards the feasible space [37]: 

 

 (12) 

 

 is the number of feasible solutions,  varies in the [0,1] interval [37]: 
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 (13) 

 

 is the number of non-violated constraints in the present population and  is the 

population size. 

The fitness function for feasible and infeasible solutions is as follows [37]: 

 

 (14) 

 

 is ranking of solution  among feasible ones, sorted based on the objective 

function value. 

Another relationship related to infeasible solutions is: 

 

 (15) 

 

where  and  are ranking of solution x based, respectively, on the 

values of the penalty and objective functions among infeasible solutions; here,  plays the 

role of giving weight to two ranking criteria (penalty and objective functions) [37]. 

 and  are the integration parameters defined as follows: 

 

 (16) 

 
(17) 

 

where  is the number of infeasible solutions in the population and  is: 

 

 (18) 

 

Users need not adjust any parameter manually because they are handled automatically in 

the proposed technique. In short, E-BRM is aimed to use the potential of the infeasible 

solutions and direct the search towards the feasible space. 

 

3.2. Mutation operator 

“Mutation” is an important GA operator that plays a vital role in keeping diversity in the 

population and its absence may cause some search space regions not to be explored [38]. 

This paper has used the Gaussian mutation to mutate variable i through the following 

equation: 

 

 (19) 
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where  and  are the mutated and primary variables, respectively and  is a 

normally distributed random number with 0 mean and standard deviation [39]. 

 

3.3. Crossover operator 

“Crossover” is another major operator that combines the characteristics of two parent 

chromosomes to form two offspring chromosomes [40]; this paper has used the mask and 

uniform crossovers with equal probabilities for a more effective search of the design space. 

In the former, 0 and 1 are first used randomly to from a parent chromosome and the 

offspring ones are then selected from it [25] (Fig. 1). 

 

 
Figure 1. Schematic of mask crossover 

 

and in the latter, offspring chromosomes O1 and O2 are generated from parents P1 and P2 

as follows [41]: 

 

 (20) 

 (21) 

 

where  is the integration factor the value of which in this paper is 0.25. 

 

 

4. REDUCED SEARCH SPACE (RSS) TECHNIQUE 
 

Since it is very likely, in many constrained optimization problems, that the optimal solution 

may lie near or on the search space feasible-infeasible boundary region, it would be 

reasonable if the algorithm emphasized the search more on the boundaries of the feasible 

regions [42-44]. The method proposed in this paper considers a boundary region as a new 

feasible one for each constraint that forms the boundaries of the feasible space. As iterations 

go on, these regions get narrower and the search is focused further within that updated 

feasible space the details of which are given in Subsections 4.1-4.3.  

 

4.1. External boundary 

To include infeasible solutions around constraints’ boundaries, parameter  is defined 

with an initial value specified after the first iteration; this value is the maximum 

violation among the top 10% of the population for all constraints. If this value is zero, 
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will be taken equal to 1 and  is updated until the number of analyses is less than 

 after that it will become zero so as to focus only on non-violated solutions: 

 

 (22) 

 

where nfe is the current number of function evaluations and z is a control parameter to 

reduce . 

 

 

 (23) 

 

4.2. Internal boundary 

To reduce the search space from inside the feasible region, use is made of parameter . In 

minimization problems, since feasible solutions with higher objective values are considered 

less fit,  is taken a large value for each constraint so that the whole feasible region is 

initially considered. The internal boundary decreases in each iteration according to the 

following relation: 

 

 (24) 

 

where  is set equal to the minimum constraint value among the top 20% of the 

population; If all the top 20% have violated the constraint, the minimum  is taken 

equal to 5.  is the highest number of function evaluations and r is a  reduction 

control parameter. 

 

 (25) 

 

4.3. Constraint violation 

The width of the boundary region for each constraint is found as follows: 

 

 (26) 

 

Any solution outside this region is infeasible and its constraint violation is found as 

follows: 

 

 (27) 
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 (28) 

 

For solutions lying in the constraint’s outer boundary region, a slight violation ( ) is 

considered so as to prevent the final solution to be infeasible. The total value of each 

constraint violation is as follows: 

 

 (29) 

 

4.4. Elimination of inactive constraints 

Among all constraints of any optimization problem, some might be inactive [42]. After 

passing a predetermined number of iterations ( ), if some constraints of the current 

optimum solution lie outside the internal boundary, a large value is assigned to the 

corresponding constraint’s  to cover the entire feasible search space and  is set to 

zero;  is taken equal to 0.1 times the maximum number of iterations. 

An example of the RSS performance is shown in Fig. 2; 2(a) shows the total search space 

and the feasible region formed by the intersection of each constraint’s acceptable regions 

and 2(b) depicts the boundary region for each constraint  made using Eq. (26) after 

the first iteration. The shaded area identifies the new feasible area (as mentioned before, a 

slight violation is considered for solutions lying in the outer boundary region). Then, after a 

predetermined number of iterations, these boundary regions are removed for constraints for 

which the superior solution lies far from the boundaries  (constraint  in the 

present example). Fig. 2(c) shows the new reduced search space. 

 

 
(a) Original feasible region    (b) New feasible region for all constraints 
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(c) New feasible region for all constraints 

Figure 2. Example of RSS technique 

 

 

5. DESIGN EXAMPLES 
 

To check the validity of the proposed method, three benchmark frame structures are 

optimized and the results are compared with those of other previous studies. The structural 

analyses and algorithm coding are done in MATLAB and percent crossover and mutation 

are 80 and 30, respectively. 

 

5.1. Two-bay three-story frame  

Fig. 3 shows the configuration and loading of a 2-bay 3-story frame optimized based on the 

AISC-LRFD criteria. The steel elasticity modulus E is 200 GPa (29000 ksi), yield stress ( ) 

is 248.2 MPa (36 ksi), the beams’ unbraced length factor was 0.167, beams were all selected 

from the W-shaped sections of AISC standard list, columns were selected only from W10 

sections [7, 25, 45]. The population size in each cycle is 30. 

 

 
Figure 3. 2-bay 3-story steel frame structure 
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Fig. 4 shows the convergence history of the mentioned frame optimization. The optimum 

design with a minimum frame weight of 83.587 KN was obtained by standard GA after 492 

analyses while the GA-RSS has done it within 195 analyses. Number of analyses required to 

meet a converged solution for the GA-RSS algorithm was found significantly less than those 

carried by Pezeshk et al. [7]. They were also less than those found by DDHS [45] and 

IMOEA [25]. The average weight of the GA-RSS designs over the 10 independent runs was 

84.163 KN, with a standard deviation of 1.82 KN while the average weight of the standard 

GA designs was 84.451 KN, with a standard deviation of 2.73 KN. 

 

 
Figure 4. Comparison of the best-weight convergence curves of GA-RSS and standard GA 

obtained in the two-bay three-story frame problem 

 

Table 1 compares the optimization results of this study with other results in the literature 

and reveals that the convergence speed has improved in the GA-RSS compared to other 

algorithms. 

 
Table 1: Optimal design comparison for the 2-bay 3-story steel frame structure 

Element group 

Optimal W-shapes sections   

Pezeshk et al.  
Murren and 

Khandelwal  
Mahallati et al.  Present study 

GA [7] DDHS [45] IMOEA [25] GA GA-RSS 

1 W24X62 W24X62 W24X62 W24X62 W24X62 

2 W10X60 W10X60 W10X60 W10X60 W10X60 

Weight (KN) 83.587 83.587 83.587 83.587 83.587 

No. of required 

analyses 
1800 270 250 492 195 
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5.2. One-bay ten-story frame 

Fig. 5 shows the configuration and member grouping of a 1-bay 10-story 30-member frame. 

Beams are selected from among all 267 W-shaped sections, columns are limited to W12 and 

W14 sections (66 W-shaped). This frame is designed following the AISC-LRFD 

specification and uses inter-story drift constraints, the unbraced length for each beam 

member is specified as one-fifth of the span length [6, 8, 12]. E and  are the same as in 

5.1, but the population size is 100. 

 

 
Figure 5. 1-bay 10-story steel frame structure 

 

Fig. 6 shows the convergence history for the GA-RSS and standard GA. The latter has 

computed the optimum design to be 285.37 KN within 2300 frame analyses while the 

former has done it within 2190 analyses and yielded an optimum design of 281.72 KN. GA-

RSS algorithm with a 4.78% reduction in the number of analyses caused as well a 1.28% 

improvement in the optimal solution. The average weight of the GA-RSS designs over the 

10 independent runs was 287.34 KN, with a standard deviation of 2.85 KN while the 

average weight based on the standard GA was 292.41 KN, with a standard deviation of 

12.35 KN. 
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Figure 6. Comparison of the best-weight convergence curves of GA-RSS and standard GA 

obtained in the one-bay ten-story frame problem 

 

Table 2 compares the optimization results of this study with those of other researches and 

reveals that the algorithm has found the optimal design with fewer analyses than the GA [7] 

and IACO [11] and lesser weight than GA [7] and GSU-PSO [5]. 

 

Table 2: Optimal design comparison for the 1-bay 10-story steel frame structure 

Element group 

Optimal W-shapes sections   

Pezeshk et al.  
Kaveh and 

Talatahari  
Khajeh et al.  Present study 

GA [7] IACO [11] GSU-PSO [5] GA GA-RSS 

1 W33 × 118 W33 × 118 W33 × 118 W33 × 118 W33 × 118 

2 W30 × 90 W30 × 90 W30 × 99 W30 × 99 W30 × 99 

3 W27 × 84 W24 × 76 W27 × 84 W27 × 84 W27 × 84 

4 W24 × 55 W14 × 30 W18 × 40 W16 × 45 W18 × 40 

5 W14 × 233 W14 × 233 W14 × 233 W14 × 233 W14 × 233 

6 W14 × 176 W14 × 176 W14 × 176 W12 × 190 W14 × 176 

7 W14 × 159 W14 × 145 W14 × 145 W14 × 132 W14 × 132 

8 W14 × 99 W14 × 90 W12 × 106 W14 × 99 W14 × 99 

9 W12 × 79 W12 × 65 W12 × 65 W14 × 61 W14 × 61 

Weight (KN) 289.72 274.99 287.18 285.37 281.72 

No. of required 

analyses 
3000 2500 1920 2300 2190 

 

5.3. Three-bay fifteen-story frame 

Fig. 7 shows a schematic view of the member grouping and loading of a 3-bay 15-story frame; 

here, the design constraints are the AISC combined strength constraints and displacement. 
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Beam and column element groups are selected from all 267 W-shaped sections of the AISC 

standard list [1, 2, 25] and E,  and population size are the same as in 5.2. 

 

 
Figure 7. 1-bay 10-story steel frame structure 

 

Fig. 8 shows the convergence history for the GA-RSS and standard GA. The latter has 

computed the optimum design to be 411.13 KN within 7250 frame analyses while the 

former has done it within 6150 analyses and yielded an optimum design of 405.33 KN. GA-

RSS algorithm with a 15.17% reduction in the number of analyses caused a 1.41% 

improvement in the optimal solution. The average weight of the GA-RSS designs over the 

10 independent runs was 426.89 KN, with a standard deviation of 14.29 KN while the 

average weight of the standard GA designs was 430.97 KN, with a standard deviation of 
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25.03 KN. Table 3 compares the optimum results gained from this study with those of other 

researches. The optimum design based on GA-RSS is 4.93% lighter than the optimum 

solution of HPSACO [1], 2.9% lighter than the optimum design of ICA [2] and 4.79% 

lighter than that of IMOEA [25]. 

 

 
Figure 8. Comparison of the best-weight convergence curves of GA-RSS and standard GA 

obtained in the three-bay fifteen-story frame problem 

 

Table 3: Optimal design comparison for the 3-bay 15-story steel frame structure 

Element group Optimal W-shapes sections   

 

Kaveh and 

Talatahari 

Kaveh and 

Talatahari 
Mahallati et al. Present study 

HPSACO [1] ICA [2] IMOEA [25] GA GA-RSS 

1 W21 × 111 W24 × 117 W33 × 118 W33 × 130 W33 × 118 

2 W18 × 158 W21 × 147 W36 × 160 W24 × 146 W36 × 160 

3 W10 × 88 W27 × 84 W18 × 86 W18 × 86 W14 × 90 

4 W30 × 116 W27 × 114 W14 × 120 W33 × 118 W24 × 104 

5 W21 × 83 W14 × 74 W21 × 68 W18 × 76 W24 × 76 

6 W24 × 103 W18 × 86 W30 × 90 W30 × 90 W18 × 86 

7 W21 × 55 W12 × 96 W10 × 60 W21 × 48 W14 × 48 

8 W26 × 114 W24 × 68 W24 × 68 W21 × 166 W12 × 58 

9 W10 × 33 W10 × 39 W10 × 33 W14 × 34 W14 × 30 

10 W18 × 46 W12 × 40 W12 × 40 W10 × 39 W16 × 40 

11 W21 × 44 W21 × 44 W21 × 50 W21 × 44 W21 × 44 

Weight (KN) 426.36 417.46 425.72 411.13 405.34 

No. of required 

analyses 
6800 6000 6500 7250 6150 
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6. CONCLUSIONS 
 

The GA is a random search algorithm that works based on the principle of the evolution of 

living things in the nature and uses such biological techniques as the crossover and mutation. 

It is often used to solve very complex and nonlinear problems, but despite all its benefits, its 

computation time for frame structure optimization problems is very lengthy. 

This paper introduced a GA-based reduced search space (GA-RSS) technique to improve 

the speed of convergence and quality of the optimal solution of a moment frame problem. It 

creates a boundary region for each constraint to limit the search space and focus the search 

in this region. Solutions lying in these regions are considered better than the rest and lead the 

population towards the global optimal solution. To apply the design constraints to the 

optimization problem, use was made of the Extended Balanced Ranking Method (E-BRM) 

where the solutions were sorted based on the values of the objective and penalty functions 

and, hence, the potential of the infeasible solutions was used to find the feasible ones.  
To examine the efficiency of the proposed algorithm, three frame design examples were 

solved and the numerical results were compared with some other metaheuristic algorithms 

concluding that the proposed algorithm could be justified as robust in finding reasonable 

solutions through significantly less analyses. The proposed technique, showed that still there is 

a possibility to reduce number of structural analyses required for optimization, compared to 

the results reported by others in the literature yet unveiling maybe a slightly modified optimum 

performance. Although the proposed method’s main benefit is its search focus in the 

boundaries of the feasible space where the optimal solution is more probable, it may not be 

effective in cases where the optimal solution lies in the central regions of the search space. 
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