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ABSTRACT 
 

One of the most crucial problems in geo-engineering is the instability of unsaturated slopes, 

causing severe loss of life and property worldwide. In this study, five novel meta-heuristic 

methods are employed to optimize locating the Critical Failure Surface (CFS) and 

corresponding Factor of Safety (FOS). A Finite Element Method (FEM) code is 

incorporated to convert the strong form of the Richard’s differential equation to the weak 

form. More importantly, the derived code can consider both the seismic and seepage 

conditions additional to the static loading. Eventually, the proposed optimization procedure 

is validated against benchmark examples and some insights are provided. 
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1. INTRODUCTION 
 

One of the most crucial geotechnical engineering problems is the instability of both natural 

and man-made slopes, resulting in casualties and financial loss to date. The instabilities arise 

from a triggering mechanism could have a nature of wetting-induced collapse or seismic 

driving potential. It is also to mention that other recently revealed complex factors such as 
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pore water salinity can enhance the deformation and instability of natural soil strata [1]. 

Over the years, the analysis of this problem has advanced from tedious manual calculations 

to high-level computer algorithms. Indeed, the fast-growing development of computer 

science has provided a fruitful ground for other disciplines such as geotechnical engineering 

to significantly reduce the cost of a project by employing optimization tools [2]. Hence, the 

researcher’s comprehension of the stability of slopes has improved due to the ameliorate of 

computational methods. In the slope stability problems, one of the critical aims is to evaluate 

the Factor of Safety (FOS) corresponding with the critical failure surface of the slope. 

Usually, the evaluation of FOS is executed by widely popular Limit Equilibrium Techniques 

(LETs).There are several well-known and efficient LET, such as Fellenius [3], Janbu [4], 

Bishop [5], Bishop and Morgenstern [6], Lowe and Karafaith [7], Morgenstern and Price 

[8], Janbu [9], and Spencer [10] to estimate the FOS of slopes against failure. 

A complete slope stability analysis requires investigation of the Critical Failure Surface 

(CFS) corresponding with the minimum FOS among all probable Trial Failure Surfaces 

(TFS). There are some traditional methods, such as the grid search method, to detect a CFS. 

Also, some researchers, such as Baker and Garber [11], Baker [12], Chen and Shao [13], 

Nguyen [14], Celestino and Duncan [15], and Arai and Tagyo [16], have utilized classical 

optimization procedures, same as methods of variation, simplex method, and conjugate-

gradient method to calculate the minimum FOS. Although these conventional methods are 

robust, straight forward, and swift, however, it is possible to get trapped to a local minimum 

due to consideration of a smaller number of trial failure surfaces. On the other hand, by 

considering more TFS, the search procedure to find the CSF will be impossible due to run 

time and allocated computer memory error. To overcome the mentioned drawbacks of the 

classical optimization methods, it is possible to utilize Meta-Heuristic algorithms. 
Nowadays, meta-heuristic algorithms have found many applications in different fields of 

applied mathematics, engineering, medicine, economics, and other sciences [17]. Some of 

the meta-heuristic methods are nature-inspired, utilizing for stochastic global optimization. It 

can be possible to obtain optimal or near-optimal solutions to the severe and even NP-

complete problems within an affordable computational time using meta-heuristic algorithms. 

They generally mimic a complicated or simple approach to investigate the space of solutions 

without consuming many computational costs. The mentioned and many other advantages 

encouraged researchers to employ meta-heuristic algorithms as optimizer approaches to 

different complicated optimization problems. Optimum design of dynamical systems, 

structures, optimum control, etc., are some of the fields in which meta-heuristics are 

employed triumphantly [18]. These algorithms, as aforementioned, are developed according 

to the rules inspected in nature, such as swarm behaviors, evolutionary procedures, physical 

phenomenon, animals, or humans’ behavior. 

Animals’ behavior such as flocking, migrating, hunting, and foraging approaches can be 

studied and be employed as swarm intelligent rules for developing appropriate and efficient 

meta-heuristic algorithms. For example, Water Strider Algorithm (WSA) simulates the life 

cycle of water strider bugs and their intelligent ripple communication [19]. Firefly 

Algorithm (FA) and its Enriched version are proposed according to the luminary flashing 

activities of fireflies to attract the partners in risk warning [20]. 

Some of the meta-heuristic algorithms employ the biological evolution concepts, such as 
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mutation, crossover, and natural selection. These types of methods are called Evolutionary 

Algorithms (EAs), and Genetic Algorithm (GA), Evolution Strategy (ES) algorithm, 

evolutionary programming (EP), and Genetic Programming (GP) are the most famous 

instances in this category. Also, meta-heuristics can be developed based on physical laws 

such as Colliding Bodies Optimization (CBO) algorithm [21–23], Billiards-inspired 

optimization algorithm [24], Multi-Verse Optimizer (MVO) algorithm [25], Thermal 

Exchange Optimization algorithm [26], and Black Holes Mechanics Optimization (BHMO) 

algorithm [27]. 

Another type of meta-heuristics are some algorithms having no clear origin, and some of 

them are based on mathematical models. The Covariance Matrix Adaptation Evolution 

Strategy (CMA-ES) algorithm [28,29], Eigenvectors of the Covariance Matrix (ECM) 

algorithm [30,31], and Sine Cosine Algorithm (SCA) [32] can be categorized as this group 

of algorithms. 

Some of the behavior of humans can be used for extending the rules as foundational 

concepts of meta-heuristic algorithms. Imperialist Competitive Algorithm (ICA), Teaching-

Learning Based Optimization (TLBO) algorithm, and Harmony Search [33] algorithm are 

some of the inspired algorithms based on the behavior of human.   

As seen, many methods have been established as meta-heuristic algorithms. Each one is 

successful in one or several search patterns and optimization problem types. This fact can be 

deducted from the No Free Lunch (NFL) theorem, which states that there is no universal, 

robust algorithm for all types of problems [34]. Therefore, studying the new patterns, social 

behavior, etc., for developing new robust algorithms are required. 

Similar to other engineering problems, meta-heuristic algorithms are utilized successfully 

to determine the most appropriate critical failure surface and its corresponding factor of 

safety. Genetic Algorithm (GA) [35–40], Particle Swarm Optimization (PSO) [41–46], Grey 

Wolf Optimization (GWO) [47], and Teaching-Learning Based Optimization (TLBO) [48] 

are some of the successfully employed meta-heuristic methods in this problem. 

In this study, five novel meta-heuristic methods, including Black Hole Mechanics 

Optimization (BHMO), Enriched Firefly Algorithm (EFA), Eigenvectors of the Covariance 

Matrix (ECM), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and Sine 

Cosine Algorithm (SCA), are utilized to determine critical failure surface due to reduction of 

the FOS. The paper reports the outcomes of the mentioned algorithms in solving 

homogenous soil slope, layered slope considering the effect of the phreatic surface resulting 

from steady-state seepage, and seismic analysis. To obtain more reliable analysis, the Finite 

Element Method (FEM) concepts are employed to convert the strong form of Richard’s 

differential equation to the weak form. As a comparative study in meta-heuristic method 

robustness, the final results of the employed algorithms are compared together. Also, for 

validation, the results of the current study have been verified by already available published 

results of literature, such as [39,44,49]. 

The rest of this paper is organized as follows. Section 2 is dedicated to the main differential 

equation of the fluid flow within a porous medium, its strong form, weak form, and finite 

element formulation. In section 3, the utilized meta-heuristic algorithms have been introduced 

in a nutshell. Section 4 represents numerical examples and comparative deductions of 

employed algorithm robustness. Finally, section 5 concludes the results of the current study. 
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2. FLUID FLOW EQUATIONS THROUGH A POROUS MEDIA 
 

In many real-world engineering problems, it is necessary to model fluid flow through a 

porous medium such as the flow of water through soil, earthen dam, and through pipes or 

around solid bodies. By some considerations, their form of basic differential equations is 

alike. This section is dedicated to develop and present the basic formulation of fluid flow 

analysis in a porous medium. Firstly, the strong form of the central equation is performed, 

and then its weak form is developed for the finite element analysis. In the procedure of 

establishing the equations, the fluid is considered as an ideal one in a steady-state, not 

rotating, incompressible, and inviscid. 
 

2.1 The strong-form formulation 

To derive the basic differential equation of the fluid flow through a porous medium, firstly, a 

one-dimensional control volume is considered. Then it is extended to two-dimensional 

problems. Fig. 1 illustrates a control volume for one-dimensional fluid flow. 

 

 

Figure 1. Control volume for one-dimensional fluid flow 

 

According to the volume control illustrated in Fig. 1, Eq. 1 can be stated based on the 

conservation of mass. 
 

in b outM M M   (1) 

 

where Min is the mass entering the control volume, Mb is the mass generated within the 

body, and Mout is the mass leaving the control volume, all in units of kilograms or slugs. 

It is possible to restate Eq. 1 in the form of Eq. 2. 

 

x x dxv Adt Qdt v Adt      (3) 
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where vx is the velocity of the fluid flow at surface edge x, in units of m/s or in./s. vx+dx is the 

velocity of the fluid leaving the control volume at surface edge x + dx. t is time, in unit of 

second. Q is an internal volumetric flow rate, in m3/s or in.3/s. ρ is the mass density of the 

fluid, in kg/m3 or slug/in.3. Finally, A is the cross-sectional area perpendicular to the fluid 

flow, in m2 or in.2. 

To relate the velocity of fluid flow to the hydraulic gradient, the change in the fluid head 

with respect to x, Darcy’s law can be employed, as stated in Eq. 3. 

 

x xx xx x

d
v K K g

dx


     (3) 

 

where Kxx is the permeability coefficient of the porous medium in the x-direction, in m/s or 

in./s. φ is the fluid head in m or in. Lastly, gx is the fluid hydraulic gradient or head gradient. 

Eq. 3 states that the velocity in the x-direction is proportional to the gradient of the fluid 

head in the same direction. By using Fourier’s law, Eq. 4 can be stated. 

 

x dx xx

x dx

d
v K

dx






   (4) 

 

By Taylor series expansion, Eq. 5 can be obtained. 

 

( )x dx xx xx

d d d
v K K dx

dx dx dx

 


 
   

 
 (5) 

 

where the expansion is truncated by the two-term. 

By substituting Eqs. 3 and 5 into Eq. 2, dividing Eq. 2 by ρAdxdt, and simplifying, the 

basic differential equation for one-dimensional problems can be stated as Eq. 6. 

 

( ) ' 0xx

d d
K Q

dx dx


   (6) 

 

where Q’ = Q/A dx is the volume flow rate per unit volume in units s-1. For a constant 

permeability coefficient, Eq. 6 can be converted to Eq. 7. 

 
2

2
' 0xx

d
K Q

dx


   (7) 

 

where the boundary conditions are of the form φ = φB on S1, φB represents a known boundary 

fluid flow, and S1 is a surface. 

For two-dimensional control volumes, as illustrated in Fig. 2, the strong form of the main 

differential equation can derive analogously. Eq. 8 states the strong form of the fluid flow 

through a porous medium in the two-dimensional control volume. 
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Figure 2. Control volume for two-dimensional fluid flow 

 

( ) ( ) ' 0xx yyK K Q
x x y y

    
  

   
 (8) 

 

with boundary conditions φ = φB on S1, and 

 

2.xx x yy yK C K C cons on S
x y

  
 

 
 (9) 

 

where Cx and Cy are direction cosines of the unit vector normal to the surface S2, as 

illustrated in Fig. 3. 

 

 
Figure 3. Unit vector normal to surface S2 

 

2.2 The weak-form and finite element formulation 

In order to solve Eq. 8, which is known as Laplace’s equation, Richard’s equation, flow 

differential equation, etc., its strong form should be converted to a weak form. Also, to 

utilize the finite element formulation in solving procedure, an appropriate element should be 

considered. In the current study, the three-node triangular element, as illustrated in Fig. 4, is 

employed to solve the fluid-flow problems in two-dimensional space. 
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Figure 4. Fundamental triangular element, including nodal potentials 

 

By considering N as the vector of shape functions, the potential function, as Eq. 10, can 

be stated in terms of nodal potentials. 

 

 
i

i j m j

m

p

N N N p

p



 
 

    
 
 

 (10) 

 

where pi, pj, and pm are the nodal potentials. Note that for groundwater flow, φ is the 

piezometric fluid head function. The shape functions can be considered as Eq. 11. 

 

1
( )

2
i i i iN x y

A
      (11) 

 

where the α, β, and γ can be calculated using Eqs. 12 to 14, respectively. 

 

, ,
j m i jm i

i j m

j m i jm i

x x x xx x

y y y yy y
      (12) 

, ,i j m j m i m i jy y y y y y         (13) 

, ,i m j j i m m j ix x x x x x         (14) 

 

The gradient matrix g can be stated using Eq. 15. 

 

    g B p  (15) 

 

where matrix B is given by Eq. 16. 
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 
1

2

i j m

i j m

B
A

  

  

 
  

 
 (16) 

 

Therefore, the gradient matrix g is equal to Eq. 17. 

 

 
x

y

g
g

g

 
  
 

 (17) 

 

Now, the velocity-gradient matrix relationship can be presented as Eq. 18. 

 

  
x

y

v
D g

v

 
  

 
 (18) 

 

where the material property matrix, D, is defined as Eq. 19. 

 

 
0

0

xx

yy

K
D

K

 
  
 

 (19) 

 

In the following, the stiffness matrix for each element should be driven. For a fundamental 

three-node triangular element, the stiffness matrix can be employed as Eq. 20. 

 

[ ] [ ] [ ][ ]T

V

k B D B dV   (20) 

 

If the constant-thickness (t) is assumed and noting that the integrated terms are constant, 

then the Eq. 21 can be used rather than Eq. 20. 

 

[ ] [ ] [ ][ ]Tk tA B D B  (21) 

 

The above equation can be simplified to Eq. 22. 

 

2 2

2 2

2 2

[ ]
4 4

i i j i m i i j i m

yyxx
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A A
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         

   
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    
   
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 (22) 
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In dealing with the force matrices, it is possible to define Eq. 23. 

 

  [ ] [ ]T T

Q

V V

f Q N dV Q N dV    (23) 

 

for constant volumetric flow rate per unit volume over the whole element. By using FEM 

and shape function concepts, Eq. 23 can be converted to Eq. 24. 

 

 
1

1
3

1

Q

QV
f

 
 

  
 
 

 (24) 

 

Eventually, the second force matrix can be stated as Eqs. 25 and 26. 

 

 
2 2

* *[ ]

i

T

q j

S S

m

N

f q N dS q N dS

N

 
 

   
 
 

   (25) 

 
*

1

1
2

0

i j

q

q L t
f



 
 

  
 
 

 (26) 

 

where Li-j is the length of the element, and q* is the assumed constant surface flow rate. 

 

 

3. OPTIMIZATION ALGORITHMS AND OBJECTIVE FUNCTION 
 

As introduced in section 1, in this paper, to determine the Critical Failure Surface (CFS), the 

Factor of Safety (FOS) of the probable CFSs is minimized using a meta-heuristic algorithm. 

In the current paper, five novel meta-heuristic algorithms are utilized to determine CFS in 

benchmark problems. All the employed methods contain some mathematical tricks in their 

optimizing procedure. Black Hole Mechanics Optimization (BHMO), Enriched Firefly 

Algorithm (EFA), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), 

Eigenvectors of the Covariance Matrix (ECM), and Sine Cosine Algorithm (CSA) constitute 

the set of employed algorithms in this study. In the following, each of them is introduced in 

a nutshell. Also, at the end of the section, the corresponding objective function with the 

slope stability problem is presented. 
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3.1 Black hole mechanics optimization 

The Black Hole Mechanics Optimization (BHMO) is a newly developed and released meta-

heuristic algorithm by Kaveh and Seddighian. The algorithm was inspired by the mechanics 

of Schwarzschild and Kerr black holes. BHMO employs a robust Mathematical Kernel 

based on Covariance Matrix formed between each variable and its relative cost. This 

Covariance Matrix leads to finding the optimum orientation for increasing or decreasing the 

current variable. By this technique, each variable is directed rapidly towards its relative best 

value. 

Moreover, each variable is assumed independently of the others in comparison with the 

cost function. This property leads to escaping from the local optimums that are present in the 

search space of some problems. Besides the Mathematical Kernel, a Physical Simulation 

helps the conduction of variables in each step. This physical simulation that is based on 

mentioned black hole Mechanics updates the variables in the vicinity of surmised global best 

in each step. Also, the elimination of weak variables is due to physical simulation after total 

navigation by the mathematical kernel. 

 

3.2 Enriched firefly algorithm 

The Firefly Algorithm (FA) is a meta-heuristic algorithm inspired by the flashing behavior 

of fireflies. There are two critical considerations in the FA. First, the variation of light 

intensity and second, the formulation of attractiveness. The appropriate assumption, for 

simplicity, is that the attractiveness of a firefly is indicated by its brightness that is, in turn, 

mapped to the encoded cost function. In minimization cases, the brightness of a firefly at a 

location can be selected approximately. 

The basic version of the Firefly algorithm (FA) was presented by Yang and has been 

applied successfully in either continuous or discrete optimization problems. Although it is 

proved that FA is a better algorithm than many other optimization meta-heuristic algorithms, 

however, there are some drawbacks in its computational processes that increase the FA 

computational complexity. For instance, it is indicated that the FA could not found the 

optimum solution in some problems and that it was trapped into the local optima. Therefore, 

Kaveh and Seddighian proposed an Enriched Firefly Algorithm (EFA) [27] in which by 

some minor tricks, the robustness of the basic FA is increased. 

 

3.3 Covariance matrix adaptation evolution strategy 

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a novel-mathematical-

based meta-heuristic algorithm that is proposed by Hansen [28]. The CMA-ES is a particular 

type of strategy for numerical optimization in which two main principles are considered for 

the adaptation of parameters of the search space distribution. Firstly, calculating the 

Maximum-Likelihood principle to increase the probability of successful candidate solution 

and search iterations. Secondly, recording two paths of the time evolution of the distribution 

mean of the strategy to contain relevant data about the correlation between consecutive 

iterations. Many meta-heuristic algorithms, such as BHMO, ECM, etc., are affected by the 

principal idea of the CMA-ES. Reference [29] includes an appropriate review of the 

Covariance Matrix Adaptation Evolution Strategy algorithm. 
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3.4 Eigenvectors of the covariance matrix 

Rahami et al. [30, 31], by combining eigenvectors of the covariance matrix and random 

normal distribution, proposed a new method meta-heuristic method. The main idea of the 

Eigenvector Covariance Matrix (ECM) algorithm is due to the CMA-ES method. The ECM 

generates some initial random solutions in each iteration, then by employing a dynamic 

penalty function assigns a value to the solutions. The most novelty in the ECM is to consider 

the least violated data as the desired one and employ the corresponding covariance matrix 

with the desire solutions to conduct and improve initial solutions. This new and novel 

algorithm includes high performance, especially in structural engineering problems. 

 

3.5 Sine cosine algorithm 

The Sine Cosine Algorithm (SCA) is a novel population-based meta-heuristic method that 

can be categorized as mathematical-based algorithms. The SCA is proposed by Mirjalili [32] 

in which a set of initial random solutions is generated. Then the initial solutions are 

improved using trigonometry equations. There are some stochastic parameters in the SCA 

that play vital roles in its performance. According to a fluctuation behavior, the initial 

solutions converge to the global bests. Another algorithm in which the fluctuation behavior 

is utilized to optimize problems is the Vibrating Particles System proposed by Kaveh and 

Ilchi [50]. The SCA can obtain optimal solutions in continuous problems. The most 

important note is that the problem should be unconstrained with one objective function. 

 

3.6 Objective function 

As introduced previously, the most appropriate CFS is one contains the minimum 

corresponding FOS. In the current study, Bishop’s method [5,6], based on the Limit 

Equilibrium Technique (LET), is employed to obtain the Factor of Safety of slopes against 

failure. Generally, a Factor of Safety (FOS) can be defined as Eq. 27. 

 

.

.

res

mob

S
FOS

S




 (27) 

 

where Sresistance and Smobilized can be defined as Eq. 28 and Eq. 29, respectively. 

 

. ' ( ) tan 'resS c N U     (28) 

. sinmobS W   (29) 

 

herein, c’ is the effective cohesion, N is base normal force and is equal to N = W cosα, U 

is the total pore-water pressure, φ’ is the effective frictional angle, W is the slice weight, and 

α is base inclination. 

By considering a seismic pseudo-static stability analysis of slopes and applying an 

acceleration that creates inertia forces, Eq. 30 and 31 can be defined. 
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( / )h h hF a W g k W   (30) 

( / )v v vF a W g k W   (31) 

 

where subscripts h and v indicate the effect in horizontal and vertical, respectively, also, F, 

a, and g represent force, acceleration, and gravitational acceleration, sequentially. 

Eventually, the Factor of Safety (FOS) equation under lateral pseudo-static earthquake 

acceleration using Bishop’s method, as the objective function, can be calculated using Eq. 

32. 

 

1

1

' sin 1
' ( cos sin ) tan '

( sin cos )

nslice

h

nslice

h

c l
c l W U F

f m
f

W F




  

 

 
    

 






 (32) 

 

where l is slice base length, nslice is the number of slices, and mα can be calculated using 

Eq. 33. 

 

sin tan '
cosm

f


 
   (33) 

 

Therefore, the CFS determination aims to minimize Eq. 32 by changing the position of 

center of CFS and its corresponding radius within the search space or slope. 

 

 

4. NUMERICAL EXAMPLES 
 

The current section is dedicated to determining the CFS of the benchmark slopes using 

introduced meta-heuristic algorithms. For this purpose, firstly, some random solutions are 

generated based on each algorithm approach. Each answer contains three individual data: x 

and y coordinates of the CFS center and its radius, respectively. Then, the slope geometry 

should be divided into some slices. This partitioning is due to the cross points of the CFS 

and slope geometry. After that, an appropriate FEM mesh should be generated to obtain slice 

parameters, such as weight, pore-water pressure, etc., using finite element analysis. Herein, 

the objective function, i.e., Factor of Safety (FOS), should be evaluated. By repeating this 

procedure, the optimum position of the CFS and minimum FOS will be obtained. For 

simplicity, the CFS is considered a circular, and Fixed Slice Division Method (FSDM) is 

employed. The introduced procedure is illustrated in Fig. 5. 
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Figure 5. The corresponding flowchart with the optimization procedure of CFS determination 

 

In the following, the optimization procedure for obtaining Critical Failure Surface (CFS) 

is utilized to solve two geotechnical benchmark problems. 

 

4.1 Benchmark problem I 

The first example, as illustrated in Fig. 6, includes a homogenous soil slope investigated 

previously by Malkawai [49]. In this example, the geotechnical parameters are as follows: 

effective cohesion c’ = 9.8 kN/m2, angle of internal friction φ’ = 10 degrees, and unit weight 

γ = 17.64 kN/m3. 
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Figure 6. The geometry of the first benchmark slope 

 

The slope has been analyzed using the introduced optimization procedure in section 3. 

The population size of each algorithm is considered as N = 40, and the maximum number of 

iterations as IT = 60.  To compare the final obtained results by different algorithms, each 

meta-heuristic method solved the problem 30 times. Then the mean of the solutions is 

considered as the performance of the employed method. Also, the number of slices is 

regarded as 20. Fig. 7 illustrates the obtained CFSs for benchmark problem 1. 

 

 
Figure 7 (a). The critical failure surfaces obtained by different meta-heuristic algorithms; a. 

overall view 
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Figure 7 (b). The critical failure surfaces obtained by different meta-heuristic algorithms; b. 

details on the right cross point 

 

As illustrated in Fig. 7, since all utilized meta-heuristic algorithms are robust and 

powerful, they could optimize the problem and obtain appropriate Critical Failure Surface 

(CFS). However, there are some differences in their procedure and results that are discussed 

in the following. The statistical results of the obtained CFSs and the final solution of each 

algorithm are reported in Table 1 and Table 2, respectively. Also, the obtained results are 

compared to other efforts, as detailed in Table 3. Finally, the optimization procedure is 

shown in Fig. 8. 

 

 
Figure 8. The optimization procedure by different meta-heuristic algorithms (benchmark 

problem 1) 
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Table 1: The statistical results of the first benchmark analysis 

 BHMO EFA CMA-ES ECM SCA 

Benchmark 1 Best 1.30E+00 1.31E+00 1.73E+00 1.32E+00 2.13E+00 

 Average 1.30E+00 1.31E+00 2.17E+00 1.33E+00 2.85E+00 

 Std. 9.20E-14 4.28E-03 5.75E-01 2.41E-02 4.69E-01 

 
Table 2: The final solutions determined by the meta-heuristic algorithms. 

CFS Properties BHMO EFA CMA-ES ECM SCA 

x Coordinate 8.5962 8.5964 8.6080 8.5767 8.6624 

y Coordinate 14.1563 14.1325 14.1291 14.2398 14.1322 

Radius 9.8345 9.8320 9.8412 9.9175 9.8613 

 
Table 3: The FOS value of the benchmark problem 1. 

Researcher Method 
Number of 

Slices 
Limit Equilibrium Method FOS 

Yamagami [82] BFGS - Morgenstern-Price Method 1.3380 

Yamagami [82] DFP - Morgenstern-Price Method 1.3380 

Yamagami [82] Powell - Morgenstern-Price Method 1.3380 

Yamagami [82] Nelder-Mead - Morgenstern-Price Method 1.3480 

Greco [83] Pattern Search - Spencer’s Method 1.3300 

Greco [83] Monte Carlo - Spencer’s Method 1.3330 

Malkawai [76] Monte Carlo - Spencer’s Method 1.2380 

Cheng [68] PSO 20 Spencer’s Method 1.3285 

Kalatehjari [71] PSO 24 Bishop’s Method 1.3128 

Himanshu [73] PSO 25 Bishop’s Method 1.3141 

Kaveh et al., 

Present study 
BHMO 20 Bishop’s Method 1.3044 

Kaveh et al., 

Present study 
EFA 20 Bishop’s Method 1.3140 

Kaveh et al., 

Present study 
CMA-ES 20 Bishop’s Method 1.7289 

Kaveh et al., 

Present study 
ECM 20 Bishop’s Method 1.3207 

Kaveh et al., 

Present study 
SCA 20 Bishop’s Method 2.1335 

 

As reported in Table 3, meta-heuristics has been applied to this benchmark problem 

successfully. According to the type of the current problem and its mathematical principles, it 

seems that those of mathematically based meta-heuristics should be more appropriate to 

employ as the optimization method. Therefore, in this paper, all employed meta-heuristics 

are mathematically based. Through this type of algorithms, according to Table 1, it seems 

that those of methods that use statistical concepts, such as covariance matrix, in their 
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procedure are more appropriate to solve this type of problem (i.e., structural and 

geotechnical problems). This may be due to the logical background of the engineering 

problems that may be modeled more suitable by mathematical based algorithms.  

 

4.2 Benchmark problem II 

The second benchmark problem investigated in the current study has been taken from the 

effort of Zolfaghari [39]. The studied slope contains a homogenous soil slope, and the 

geometric layout for the soil slope is illustrated in Fig. 9. 

 

 

Figure 9. The geometry of the second benchmark slope 

 

For the mentioned slope, the geotechnical properties are as follows: effective cohesion c’ = 

14.71 kN/m2, angle of internal friction φ’ = 20 degrees, and unit weight γ = 18.63 kN/m3. 

Other computational details are similar to the benchmark problem 1. Fig. 10 illustrates the 

obtained CFS by meta-heuristic algorithms. The optimization procedure is shown in Fig. 11, 

finally, Tables 4 to 6 report the statistical and comparative results of the considered problem. 

 

 
Figure 10 (a). The critical failure surfaces obtained by different meta-heuristic algorithms; a. 

overall view 
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Figure 10 (b). The critical failure surfaces obtained by different meta-heuristic algorithms; b. 

details on the right cross point 

 

 
Figure 11. The optimization procedure by different meta-heuristic algorithms (benchmark 

problem 2) 

 

Table 4: The statistical results of the second benchmark analysis 

 BHMO EFA CMA-ES ECM SCA 

Benchmark 

2 

Best 1.71E+00 1.72E+00 1.94E+00 1.84E+00 1.98E+00 

Average 1.72E+00 1.74E+00 1.98E+00 1.80E+00 2.10E+00 

Std. 1.92E-12 1.74E-01 3.55E-01 3.60E-01 4.71E-01 

 

Table 5: The final solutions determined by the meta-heuristic algorithms. 

CFS Properties BHMO EFA CMA-ES ECM SCA 

x Coordinate 7.4386 7.4184 7.4057 7.7538 7.3752 

y Coordinate 59.0521 58.8634 58.8734 58.6321 58.5241 

Radius 18.1049 17.8615 18.0298 17.6034 17.5943 
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Table 6: The FOS value of the benchmark problem 2 

Researcher Method 
Number of 

Slices 

Limit Equilibrium 

Method 
FOS 

Zolfaghari [66] GA - Bishop’s Method 1.7400 

Zolfaghari [66] GA - 
Morgenstern 

Method 
1.7600 

Zolfaghari [66] GA - 
Morgenstern 

Method 
1.7500 

Cheng [68] PSO 40 Spencer’s Method 1.7282 

Kalatehjari [71] PSO 40 Bishop’s Method 1.7197 

Himanshu [73] PSO 25 Bishop’s Method 1.7218 

Kaveh et al., Present study BHMO 20 Bishop’s Method 1.7061 

Kaveh et al., Present study EFA 20 Bishop’s Method 1.7143 

Kaveh et al., Present study CMA-ES 20 Bishop’s Method 1.9436 

Kaveh et al., Present study ECM 20 Bishop’s Method 1.8401 

Kaveh et al., Present study SCA 20 Bishop’s Method 1.9834 

 

According to the reported data, it is possible to say that the related concluded remarks to 

the first example might be mentioned again. There is an important note that the population 

size, maximum number of iterations, and number of slices is decidedly smaller than other 

methods specified in Table 6. It is obvious that if these algorithm parameters (i.e., the 

maximum number of iterations, population size, and the number of slices) is increased, then 

all the employed methods will achieve the best solution due to their procedure. However, in 

comparison with the mentioned method in Table 6, by less computational costs, the utilized 

algorithm could achieve accepted results. This property is due to its robustness and its 

mathematical conductivity of initial solutions. In this study, among employed meta-heuristic 

methods, the Black Hole Mechanics Optimization (BHMO) algorithm, contains the highest 

performance. This performance may be due to its procedure in which the covariance matrix 

is employed several to conduct initial solutions to the best one. Another note that affects the 

efficiency of the utilized optimization procedure in the current study is the FEM 

employment. The utilization of the FEM helps the procedure to obtain FOS more accurately 

than other approximately approaches. 

 

 

5. CONCLUSION 
 

In this paper, five robust meta-heuristic algorithms are utilized to optimize the slope stability 

problem. In order to obtain the Critical Failure Surface (CFS) and its corresponding Factor 

of Safety (FOS), the Finite Element Method (FEM) is employed. In addition to the general 

loading, seismic forces and seepage effect are considered, as well. The results are compared 

with other efforts mentioned in the literature. According to the results, this note may be 

deducted that those of meta-heuristic methods which including some mathematical 

principles in their optimization procedure, probably are more successful in dealing with the 

current geotechnical problem. Therefore, all selected meta-heuristic methods in the present 
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study containing some mathematical steps in their main algorithm.  

Among utilized meta-heuristic algorithms (all of them include mathematical theories), 

those executing statistical concepts, such as the covariance matrix between some variables, 

are more successful in optimizing benchmark problems. Based on statistical reports, it seems 

that the Black Hole Mechanics Optimization (BHMO) algorithm is more prosperous in 

solving the slope stability problem. This prosperity may be due to its several utilization of 

statistical concepts. 

 

 

REFERENCES 
 

1. Sadeghi H, Kiani M, Sadeghi M, Jafarzadeh F. Geotechnical characterization and 

collapsibility of a natural dispersive loess, Eng Geol 2019; 250: 89-100. 

2. Hosseini SAA, Mojtahedi SFF, Sadeghi H. Optimisation of deep mixing technique by 

artificial neural network based on laboratory and field experiments, Georisk Assess 

Manag Risk Eng Syst Geohazard 2020; 14: 142–57. 

3. Fellenius W. Calculation of stability of earth dam, Transact 2nd Congress Large Dams, 

Washington, DC, 1936; 4: pp. 445-462. 

4. Janbu N. Application of composite slip surface for stability analysis, Proceedings of 

European Conference on Stability of Earth Slopes, Sweden, 1954; 3: pp. 43–49. 

5. Bishop AW. The use of the slip circle in the stability analysis of slopes, Geotech 1955; 

5: 7–17. 

6. Bishop AW, Morgenstern N. Stability coefficients for earth slopes, Geotech 1960; 10: 

129–53. 

7. Lowe J. Stability of earth dams upon drawdown, Proccedings of the 1st Pan American 

Conference on Soil Mechanics and Foundation Engineering, Mexico City, 1960. 

8. Morgenstern NRU, Price VE. The analysis of the stability of general slip surfaces, 

Geotech 1965; 15: 79–93. 

9. Janbu N. Slope stability calculations, Soil Mech Found Eng, Norway, Trondheim, 1968. 

10. Spencer E. A method of analysis of the stability of embankments assuming parallel 

inter-slice forces, Geotech 1967; 17: 11–26. 

11. Baker R, Garber M. Theoretical analysis of the stability of slopes, Geotech 1978; 28: 

395–411. 

12. Baker R. Determination of the critical slip surface in slope stability computations, Int J 

Numer Anal Meth Geomech 1980; 4: 333-59. 

13. Chen ZY, Shao CM. Evaluation of minimum factor of safety in slope stability analysis 

Can, Geotech J 1988; 25: 735–48. 

14. Nguyen VU. Determination of critical slope failure surfaces, J Geotech Eng 1985; 111: 

238-50. 

15. Celestino TB, Duncan JM. Simplified search for non-circular slip surface, Proceedings 

of the 10th International Conference on Soil Mechanics and Foundation Engineering, 
Stockholm, Sweden, 1981; 1: pp. 391–394. 

16. Arai K, Tagyo K. Determination of noncircular slip surface giving the minimum factor 

of safety in slope stability analysis, Soil Found 1985; 25: 43–51. 



Optimal Solution Of Richards’ Equation For Slope Instability Analysis Using … 

 

649 

17. Kaveh A. Advances in Metaheuristic Algorithms for Optimal Design of Structures , 2nd 

edition, Springer, Switzerland, 2017. 

18. Kaveh A. Applications of Metaheuristic Optimization Algorithms in Civil Engineering , 

Switzerland, Springer, 2017. 

19. Kaveh A, Eslamlou AD. Water strider algorithm: A new metaheuristic and applications, 

Struct 2020; 5: 520-41. 

20. Kaveh A, Seddighian MR. Simultaneously multi-material layout, and connectivity 

optimization of truss structures via an Enriched Firefly algorithm, Struct 2020: 2217-31. 

21. Kaveh A, Mahdavi VR. Colliding bodies optimization: a novel meta-heuristic method, 

Comput Struct 2014; 139: 18–27. 

22. Kaveh A, Mahdavi VR. Colliding Bodies Optimization: Extensions and Applications, 

Springer, Switzerland, 2015. 

23. Kaveh A, Mahdavi VR. Colliding bodies optimization method for optimum design of 

truss structures with continuous variables, Adv Eng Softw 2014; 70: 1–12. 

24. Kaveh A, Khanzadi M, Moghaddam MR. Billiards-inspired optimization algorithm; a 

new meta-heuristic method, Struct 2020; 27: 1722-39. 

25. Mirjalili S, Mirjalili SM, Hatamlou A. Multi-verse optimizer: a nature-inspired 

algorithm for global optimization, Neural Comput Appl 2016; 27: 495-13. 

26. Kaveh A, Dadras A. A novel meta-heuristic optimization algorithm: thermal exchange 

optimization, Adv Eng Softw 2017; 110: 69–84. 

27. Kaveh A, Seddighian MR, Ghanadpour E. Black Hole Mechanics Optimization: a novel 

meta-heuristic algorithm, Asian J Civil Eng 2020; 2197: 1129-49. 

28. Hansen N. The CMA evolution strategy: A comparing review, Toward New Evolut 

Computat 2006; 1: 75–102. 

29. Igel C, Hansen N, Roth S. Covariance matrix adaptation for multi-objective 

optimization, Evol Comput 2007; 15: 1–28. 

30. Pouriyanezhad E, Rahami H, Mirhosseini SM. Truss optimization using eigenvectors of 

the covariance matrix, Eng Comput 2020, 10.1007/s00366-020-00943-x. 

31. Pouriyanezhad E, Rahami H, Mirhosseini SM. Eigenvectors of covariance matrix for 

optimal design of steel frames, Int J Optim Civil Eng 2020; 10: 295-313. 

32. Mirjalili S. SCA: A sine cosine algorithm for solving optimization problems, Knowl-

Based Syst 2016; 96: 120–33. 

33. Kaveh A, Bakhshpoori T. Metaheuristics: Outlines, MATLAB Codes and Examples, 

Springer, Switzerland, 2019. 

34. Wolpert DH, Macready WG. No free lunch theorems for optimization, IEEE Trans Evol 

Comput 1997; 1: 67–82. 

35. Goh ATC. Genetic algorithm based slope stability analysis using sliding wedge method, 

Canadian Geotechn J 1999; 36(2): 382-91. 

36. GOH ATC. Search for critical slip circle using genetic algorithms, Civil En Syst 2000; 

17: 181–211. 

37. McCombie P, Wilkinson P. The use of the simple genetic algorithm in finding the 

critical factor of safety in slope stability analysis, Comput Geotech 2002; 29: 699–714. 

38. Sabhahit N, Jacob S, Madhav MR. Genetic Algorithms in Searching the Critical Slip 

Surface, Indian Geotech J 2002; 32: 86–101. 



A. Kaveh, M. R. Seddighian, H. Sadeghi and S. Sadat Naseri 

 

650 

39. Zolfaghari AR, Heath AC, McCombie PF. Simple genetic algorithm search for critical 

non-circular failure surface in slope stability analysis, Comput Geotech 2005; 32: 139-52. 

40. Bhattacharjya RK, Satish MG. Optimal design of a stable trapezoidal channel section 

using hybrid optimization technique, J Irrig Drain Eng 2007; 133: 323-9. 

41. Cheng YM, Li L, Chi S, Wei WB. Particle swarm optimization algorithm for the 

location of the critical non-circular failure surface in two-dimensional slope stability 

analysis, Comput Geotech 2007; 34: 92–103. 

42. Cheng YM, Li L, Chi SC. Performance studies on six heuristic global optimization 

methods in the location of critical slip surface, Comput Geotech 2007; 34: 462–84. 

43. Nagesh Kumar D, Janga Reddy M. Multipurpose reservoir operation using particle 

swarm optimization, J Water Res Plan Manag 2017; 133: 192–201. 

44. Kalatehjari R, bin Ali N, Ashrafi E. Fiding the critical slip surface of a soil slope with 

the aid of particle swarm optimization, Conference: International Multidisciplinary 

Scientific GeoConference (SGEM 2011); 1: pp. 459-466. 

45. Hajihassani M, Armaghani DJ, Kalatehjari R. Applications of particle swarm 

optimization in geotechnical engineering: a comprehensive review 2018; Geotech Geol 

Eng 36: 705–22. 

46. Himanshu N, Burman A. Determination of critical failure surface of slopes using 

particle swarm optimization technique considering seepage and seismic loading, 

Geotech Geol Eng 2019; 37: 1261-81. 

47. Himanshu N, Kumar V, Burman A, Maity D, Gordan B. Grey wolf optimization 

approach for searching critical failure surface in soil slopes, Eng Comput 2020. 

48. Mishra M, Gunturi VR, Maity D. Teaching–learning-based optimisation algorithm and 

its application in capturing critical slip surface in slope stability analysis, Soft Comput 

2020; 24: 2969-82. 

49. Malkawi AIH, Hassan WF, Sarma SK. Global search method for locating general slip 

surface using Monte Carlo techniques, J Geotech Geoenviron Eng 2001; 127: 688-98. 

50. Kaveh A, Ilchi Ghazaan M. A new meta-heuristic algorithm: vibrating particles system, 

Sci Iran Trans A, Civil Eng 2017; 24 :551-66. 


