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ABSTRACT 
 

In this paper, set theoretical variants of the artificial bee colony (ABC) and water 

evaporation optmization (WEO) algorithms are proposed. The set theoretical variants are 

designed based on a set theoretical framework in which the population of candidate 

solutions is divided into some number of smaller well-arranged sub-populations. The 

framework aims to improve the compromise between diversification and intensification of 

the search and makes it possible to design various variants of a P-metaheuristic. In order to 

verify the stability and robustness of the set theoretical framework, the proposed algorithms 

are applied to solve three different benchmark structural design optimization problems. The 

results show that the set theoretical framework improves the performance of the ABC and 

WEO algorithms, especially in terms of robustness and convergence characteristics.  
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1. INTRODUCTION 
 

Set theory is a branch of mathematics that studies the sets and theirs properties. A set can be 

defined as a well-defined collection of objects called elements or members [1]. The elements 

of a set may or may not have mathematical nature. Georg Cantor, one of the creators of the 

set theory, defined a set as follows [2]: “A set is a gathering together into a whole of 

definite, distinct objects of our perception or of our thought, which are called elements of the 

set.” The language of set theory can be used to represent almost any mathematical concept. 
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This capability can be regarded as one of the most important achievements of mathematics. 

Accordingly, it can be said that the set theory provides a foundation for mathematics [3]. Set 

theory has found many applications in engineering. As an example in structural engineering, 

Behravesh et al. used set theory for configuration processing [4]. Kaveh [5] employed a set 

of contours and its transversal in nodal ordering for bandwidth reduction, and Kaveh et al. 

[6] employed set theory concepts for modeling the shuffled shepherd optimization 

algorithm.  

Metaheuristics can be classified based on many different criteria, the most common of 

which is population-based search versus single-solution based search. Single-solution based 

algorithms manipulate and move a single candidate solution in the search space, whereas P-

metaheuristics start their own search process with a set of candidate solutions, known as 

initial population. Considering this point, the initial population of P-metaheuristics could be 

viewed as a set with a certain number of elements. In a similar manner, a P-metaheuristics 

could be viewed as an iterative improvement of a set of elements. In these algorithms, an 

iterative search process continues by a set of candidate solutions until a pre-defined stopping 

criterion is fulfilled. At the first step, the initial population is initialized. Different strategies 

can be used to generate the initial population, such as random generation, sequential 

diversification, parallel diversification, heuristic initialization, etc. [7]. Random generation is 

the most common strategy for generation of the initial population. Next, based on higher 

level strategies acting on the current set of candidate solutions, a new set of candidate 

solutions is generated. Using some specific procedures known as replacement strategies, the 

current set of candidate solutions is replaced with the set of new ones. In other words, the 

current set of candidate solutions is updated. This process is repeated until a pre-defined 

stopping criterion is satisfied. The most important point in designing a metaheuristic is to 

keep a good balance between two conflicting aspects of exploration (global search or 

diversification) and exploitation (local search or intensification), which is an uneasy task [8].  

Exploration means the ability of the metaheuristic to search entirely unknown regions of the 

search space, whereas exploitation means the ability of the metaheuristic to search the 

neighborhood of promising regions of the search space which have been visited formerly. 

Recently, Kaveh et al. [9] proposed a general set theoretical framework for population-based 

metaheuristics (P-metaheuristics) with the aim of improving the compromise between 

diversification and intensification of the search. The main idea of the framework is to devide 

the population of candidate solutions into a number of smaller well-arranged sub-

populations through which the search process is done. The framework, which is applicable 

to almost all the P-metaheuristics, makes it possible to design various variants of a P-

metaheuristic.  

In this study, the set theoretical framework is employed and set theoretical variants of the 

artificial bee colony (ABC) and water evaporation optmization (WEO) algorithms are 

developed. The ABC algorithm is a P-metaheuristic which was developed by Karaboga in 

2005 [10] based on the foraging behavior of honey bees. The set theoretical variants of the 

ABC algorithm are named as OST-ABC and STMP-ABC, which are the acronyms of 

“ordered set theoretical artificial bee colony” and “set theoretical multi-phase artificial bee 

colony”, respectively. The WEO algorithm was developed by Kaveh and Bakhshpoori [11] 

in 2016 inspired by evaporation of a tiny amount of water molecules on the solid surface 

with different wettability. In a similar way, OST-WEO and STMP-WEO are the acronyms 
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of “ordered set theoretical water evaporation optmization” and “set theoretical multi-phase 

water evaporation optmization”, respectively.  

In order to provide evidence to support the applicability and efficiency of the set 

theoretical framework, the developed algorithms are tested on three different benchmark 

structural design optimization problems, including continuous optimization of dome-like 

truss structures with multiple natural frequency constraints, and discrete size optimization of 

planar steel frame structures with strength and displacement constraints. The reason for 

choosing frequency-constrained optimization problems is due to their highly nonlinear, non-

convex, and discontinuous search spaces with several local optima [12]. The most common 

problem with frequency-constrained optimization seems to be the high sensitivity of 

vibration modes to shape modifications, which means that vibration modes can switch 

during the optimization process. This can lead to significant changes in natural frequencies, 

which causes convergence difficulties [13]. In the past few decades, frequency-constrained 

optimization problems have attracted the attention of many researchers. Bellagamba and 

Yang [14] were one of the first researchers to study the minimum-mass design of truss 

structures with natural frequency constraints. Grandhi and Venkayyat [15] presented a 

design optimization algorithm for structural weight minimization with multiple frequency 

constraints. Tong and Liu [16] presented an optimization procedure for the minimum weight 

optimization of truss structures subjected to constraints on stresses, natural frequencies and 

frequency responses. Sedaghati et al. [17] compared the performance of the displacement 

and force methods to optimize truss and beam structures with frequency constraints. 

Lingyun et al. [18] used an enhanced genetic algorithm to solve the truss shape and sizing 

optimization problems. Gomes [19] investigated the performance of a particle swarm 

optimization (PSO) algorithm in the field of truss optimization with frequency constraints. 

In a similar work, Miguel and Fadel Miguel [20] used harmony search (HS) and firefly 

algorithm (FA) to solve truss shape and size optimization with frequency constraints. Kaveh 

and Javadi [21] performed size and shape optimization of truss structures using an efficient 

hybrid algorithm harmony search (HS), ray optimization (RO), and particle swarm 

optimization (PSO). Kaveh and Ilchi Ghazaan [22] utilized an improved ray optimization 

algorithm to the optimum design of truss structures subjected to multiple frequency 

constraints. Kaveh and Ilchi Ghazaan [23] used vibrating particles system (VPS) algorithm 

for truss optimization with multiple natural frequency constraints. Kaveh and Zolghadr [24] 

presented a study where the cyclical parthenogenesis algorithm (CPA) was employed for 

layout optimization of truss structures with frequency constraints. Kaveh and Zolghadr [25] 

reviewed different different metaheuristic optimization techniques utilized to structural 

optimization problems with frequency constraints. Kaveh et al. [26] studied the performance 

of some metaheuristics in frequency-constrained truss optimization problems. Frame 

structures are among the most common structures in the structural engineering. In the past 

few decades, the problem of optimal design of steel frame structures has been studied by 

many researchers using different optimization methods: Pezeshk et al. [27] using genetic 

algorithm (GA), Camp et al. [28] using ant colony optimization (ACO), Degertekin [29] 

employing harmony search (HS), Kaveh and Talatahari [30] using charged system search 

(CSS), Zhou and Yang [31] using an improved genetic algorithm, Kaveh and Bakhshpoori 

[32] using cuckoo search (CS) algorithm, Maheri and Narimani [33] using an enhanced 

harmony search (EHS) algorithm, Talatahari et al. [34] using the eagle strategy with 
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differential evolution (DE), Kaveh and Ilchi Ghazaan [35] using CBO and ECBO methods, 

Kazemzadeh Azad and Hasançebi [36] using guided stochastic search (GSS), Kaveh and 

Bakhshpoori [37] using an accelerated water evaporation optimization (AWEO), Kaveh and 

Ilchi Ghazaan [38] using vibrating particles system (VPS) algorithm, and Kaveh et al. [39] 

employing seven different population-based metaheuristics. 

The rest of this paper is organized as follows: Section 2 is devoted to present set 

theoretical variants of the ABC and WEO algorithms. Furthermore, the optimization 

problems are defined briefly. In Section 3, the proposed algorithms are tested on three 

different benchmark structural design optimization problems. Finally, the last section 

concludes the paper. 

 

 

2. MATERIALS AND METHODS 
 

2.1 Set theoretical optimization algorithms 

Recently, Kaveh et al. [9] employed the concepts of set theory and proposed a general set 

theoretical framework for population-based optimization algorithms. The main idea of the 

framework is to divide the population of candidate solutions into a number of smaller well-

arranged sub-populations. In this paper, the set theoretical framework is applied to the 

artificial bee colony (ABC) and water evaporation optmization (WEO) algorithms. For each 

of the ABC and WEO algorithms, two different set theoretical variants are proposed: (1) 

ordered set theoretical (OST) variant; and (2) set theoretical multi-phase (STMP) variant. 

The OST variant is designed as follows: The initial population is divided into a number of 

smaller well-arranged sub-populations. Next, the search process starts through the sub-

populations separately. It should be noted that the well-arranged sub-populations are 

reformed before the next iteration starts. The process continues until the termination 

criterion is satisfied. The STMP variant is a multi-phase version of the OST variant. In each 

phase of the STMP variant, a self-contained OST variant is executed with a specific number 

of sub-populations. Each phase of the STMP variant uses the output of the previous one as 

its initial population. In other words, the phases are executed in a sequence without any 

cooperation. The only difference between the phases of the STMP variant is the number of 

sub-populations. The number of sub-populations decreases in a few steps from the integer 𝑛1 

at the first phase to 𝑛𝑘 at the last (e.g., 𝑘-th) phase. Obviously, the numbers 𝑛1 and 𝑛𝑘 must 

be chosen among the divisors of 𝑛𝐸 where 𝑛𝐸 represents the population size.  

 

2.1.1. Set theoretical variants of the artificial bee colony algorithm 

In the ABC algorithm, each candidate solution is represented by a food source. The food 

sources are modified by honey bees in a repeated manner with the aim of reaching food 

sources with better quality. In each iteration, the ABC algorithm searches in three sequential 

phases. Employed bees modify the food sources and share their information with onlooker 

bees. Onlooker bees select a food source based on the information from employed bees and 

try to modify it. Scout bees perform random searches in the vicinity of the hive. In the 

following, the three phases are formulated: 
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Employed bees phase: Generation of new honey bees (𝑛𝑒𝑤𝐻𝐵) based on the recruited 

or employed bees strategy. This phase can be stated mathematically as follows: 

 

𝑛𝑒𝑤𝐻𝐵 = 𝐻𝐵 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 (1) 

𝑠𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑(𝑖)(𝑗) × (𝐻𝐵 − 𝐻𝐵[𝑝𝑒𝑟𝑚𝑢𝑡𝑒(𝑖)(𝑗)]) (2) 

 

where 𝑖 is the number of honey bees; 𝑗 is the number of design variables; 𝑟𝑎𝑛𝑑(𝑖)(𝑗)  is a 

random number chosen from the [-1, 1] interval; 𝐻𝐵  is the current set of honey bees; 

𝑛𝑒𝑤𝐻𝐵  is the newly generated set of honey bees; 𝑝𝑒𝑟𝑚𝑢𝑡𝑒(𝑖)(𝑗)  is different rows 

permutation functions; and 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 is the step size of movement of the honey bees. 

Onlooker bees phase: Generate new honey bees (𝑛𝑒𝑤𝐻𝐵) based on the onlooker bees 

strategy. The onlooker bees phase can be stated mathematically as follows: 

 

𝑛𝑒𝑤𝐻𝐵 = {
𝐻𝐵𝑟𝑤𝑠 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒, if 𝑟𝑎𝑛𝑑 < 𝑚𝑟
𝐻𝐵𝑟𝑤𝑠,                                      otherwise

 (3) 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑(𝑖)(𝑗) × (𝐻𝐵𝑟𝑤𝑠 − 𝐻𝐵[𝑝𝑒𝑟𝑚𝑢𝑡𝑒(𝑖)(𝑗)]) (4) 

 

where 𝐻𝐵𝑟𝑤𝑠 is food sources chosen by onlooker bees based on the roulette wheel selection 

scheme; and 𝑚𝑟 is a parameter that controls whether the selected food source by onlooker 

bee will be modified or not.  

Scout bees phase: In the scout bee phase, employed bees who cannot modify their food 

sources after a specified number of trials (𝐴) become scouts. The corresponding food source 

will be abandoned, and a random-based new food source will be generated in the vicinity of 

the hive. 

 

2.1.1.1 Ordered set theoretical artificial bee colony (OST-ABC) 

The OST-ABC algorithm is based on the idea of dividing the population of candidate 

solutions into a number of well-arranged sub-populations of the same size. The OST-ABC 

algorithm is stated in the following four steps: 

Step one (initialization): The initial population is generated randomly. 

Step two (forming the sub-populations): The sub-populations are formed based on a 

procedure proposed by Kaveh et al. [6] as follows: Let us consider an initial population 

containing 𝑛𝐸 solutions. The aim is to divide the initial population into a certain number of 

smaller well-arranged sub-populations (e.g., 𝑚) of the same size. To this end, the initial 

population is evaluated and the candidate solutions are sorted in ascending order of 

penalized objective function. In the first step of forming the sub-populations, the first 𝑚 

candidate solutions of the sorted population are chosen and each candidate solution is placed 

in one of the sub-populations randomly. In the second step, the next 𝑚 candidate solutions 

are chosen and placed in the sub-populations randomly. The process continues until all 

candidate solutions of the sorted population are chosen and placed in the sub-populations. At 

the end of the last step, the sub-populations have an equal number of candidate solutions. If 

𝑛𝑆 is the number of candidate solution of a sub-population, it can be said that:  

 

𝑛𝐸 = 𝑚 × 𝑛𝑆 (5) 
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Step three (main body of ABC): The main body of the ABC algorithm is performed for 

all the sub-populations separately. In other words, three phases of the ABC algorithm are 

executed once for all the sub-populations separately. Therefore, 𝑚 sub-population, each of 

them containing 𝑛𝑆 new candidate solutions, are generated. Next, the new sub-populations 

collectively form the population of new candidate solutions.  

Step four (termination criterion): If the termination criterion of the algorithm is 

satisfied, the algorithm is terminated; otherwise, the algorithm returns to step two. The 

maximum number of objective function evaluations (𝑀𝑎𝑥𝑁𝐹𝐸𝑠 ) is considered as the 

termination criterion of the algorithms. 

The pseudo code of the OST-ABC algorithm is provided as follows: 

Initialization: 

 Set the algorithm parameters: 𝑚𝑟, 𝐴, 𝑛𝐸, 𝑚, and 𝑀𝑎𝑥𝑁𝐹𝐸𝑠. 
 Generate random initial population of food sources (𝐻𝐵) and evaluate them.  

 𝑁𝐹𝐸𝑠 = 0; 

Cyclic body of the algorithm: 

While 𝑁𝐹𝐸𝑠 < 𝑀𝑎𝑥𝑁𝐹𝐸𝑠 
 Sort the initial population in ascending order of penalized objective function. 

 Form the sub-populations based on the procedure described in the second step of the 

OST-ABC algorithm. 

 Generate the sub-populations of new food sources (𝑛𝑒𝑤𝐻𝐵) based on the employed bees 

strategy using Eqs. (1) and (2). 

 Evaluate the newly generated food sources (𝑛𝑒𝑤𝐻𝐵) and apply replacement strategy 

between old and new food sources. 

 Update the number of objective function evaluations (𝑁𝐹𝐸𝑠 = 𝑁𝐹𝐸𝑠 + 𝑛𝐸).  

 Generate the sub-populations of new food sources (𝑛𝑒𝑤𝐻𝐵) based on the onlooker bees 

strategy using Eqs. (3) and (4). 

 Evaluate the newly generated food sources (𝑛𝑒𝑤𝐻𝐵) and apply replacement strategy 

between old and new food sources.  

 Update the number of objective function evaluations (𝑁𝐹𝐸𝑠 = 𝑁𝐹𝐸𝑠 + 𝑛𝐸). 

 Discard each food sources if there is no improvement after the 𝐴 number of objective 

function evaluations. Employ scout bees to generate randomly food sources in the 

vicinity of the hive and then evaluate them.  

 Update the number of objective function evaluations.  

 Collect the sub-populations and form the unified populations of food sources. 

 Monitor the best food source found by the OST-ABC algorithm so far.  

End While 

The steps of the OST-ABC algorithm is shown in Fig. 1. 
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Figure 1. Steps of the OST-ABC algorithm 
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2.1.1.2 Set theoretical multi-phase artificial bee colony (STMP-ABC) 

The STMP-ABC algorithm is a multi-phase version of the OST-ABC algorithm. In each 

phase of the STMP-ABC algorithm, a self-contained OST-ABC algorithm is executed with a 

specific number of sub-populations. Each phase uses the output of the previous one as its 

initial population. In other words, the phases are executed in a sequence without any 

cooperation. Each phase continues until the number of objective function evaluations 

(𝑁𝐹𝐸𝑠) reaches its predefined limit. The phases differ in the number of sub-populations they 

work with. The number of sub-populations varies in a decreasing order. The pseudo code of 

the STMP-ABC algorithm is provided as follows: 

Initialization: 

 Set the algorithm parameters: 𝑚𝑟, 𝐴, 𝑛𝐸, 𝑚, 𝑘, and 𝑀𝑎𝑥𝑁𝐹𝐸𝑠. 
 Generate random initial population of food sources (𝐻𝐵) and evaluate them.  

 Specify the number of sub-populations in each phase (𝑛1, 𝑛2, ⋯ , 𝑛𝑘).  

 𝑖 = 0; 𝑁𝐹𝐸𝑠 = 0; 

Cyclic body of the algorithm: 

While 𝑖 < 𝑘 

 𝑖 = 𝑖 + 1;  

While 𝑁𝐹𝐸𝑠 < 𝑖 × 𝑀𝑎𝑥𝑁𝐹𝐸𝑠/𝑘 

 Sort the initial population in ascending order of penalized objective function. 

 Form the sub-populations of 𝑖 -th phase (𝑛𝑖  sub-populations) based on the procedure 

described in the second step of the OST-ABC algorithm.  

 Generate the sub-populations of new food sources (𝑛𝑒𝑤𝐻𝐵) based on the employed bees 

strategy using Eqs. (1) and (2). 

 Evaluate the newly generated food sources (𝑛𝑒𝑤𝐻𝐵) and apply replacement strategy 

between old and new food sources. 

 Update the number of objective function evaluations (𝑁𝐹𝐸𝑠 = 𝑁𝐹𝐸𝑠 + 𝑛𝐸).  

 Generate the sub-populations of new food sources (𝑛𝑒𝑤𝐻𝐵) based on the onlooker bees 

strategy using Eqs. (3) and (4). 

 Evaluate the newly generated food sources (𝑛𝑒𝑤𝐻𝐵) and apply replacement strategy 

between old and new food sources.  

 Update the number of objective function evaluations (𝑁𝐹𝐸𝑠 = 𝑁𝐹𝐸𝑠 + 𝑛𝐸). 

 Discard each food sources if there is no improvement after the 𝐴 number of objective 

function evaluations. Employ scout bees to generate randomly food sources in the 

vicinity of the hive and then evaluate them.  

 Update the number of objective function evaluations.  

 Collect the sub-populations and form the unified populations of food sources. 

 Monitor the best food source found by the STMP-ABC algorithm so far.  

End While 

End While 

The steps of the STMP-ABC algorithm is shown in Fig. 2. 
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Figure 2. Steps of the STMP-ABC algorithm 
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2.1.2 Set theoretical variants of the water evaporation optimization algorithm 

In the WEO algorithm, each candidate solution is represented by a water molecule. Solid 

surface or substrate with variable wettability is reflected as the search space. Decreasing the 

surface wettability (substrate changed from hydrophility to hydrophobicity) reforms the 

water aggregation from a monolayer to a sessile droplet. Decreasing wettability of the 

surface can represent the decrease of objective function for a minimizing optimization 

problem. Evaporation flux rate of the water molecules is considered as the most appropriate 

measure for updating the individuals which its pattern of change is in good agreement with 

the local and global search ability of the algorithm. The WEO algorithm searches in two 

sequential phases of monolayer evaporation and droplet evaporation. In the first half of the 

iterations (𝑁𝐹𝐸𝑠 ≤ 𝑀𝑎𝑥𝑁𝐹𝐸𝑠/2), the water molecules are updated based on the monolayer 

evaporation strategy, while, within the second half of the iterations (𝑁𝐹𝐸𝑠 > 𝑀𝑎𝑥𝑁𝐹𝐸𝑠/2), 

the water molecules are updated based on the droplet evaporation strategy. In the following, 

the two phases are formulated: 

Monolayer evaporation phase: Generation of new water molecules (𝑛𝑒𝑤𝑊𝑀) based on 

the monolayer evaporation strategy. This phase can be stated mathematically as follows:  

 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑 × (𝑊𝑀[𝑝𝑒𝑟𝑚𝑢𝑡𝑒1(𝑖)(𝑗)] −𝑊𝑀[𝑝𝑒𝑟𝑚𝑢𝑡𝑒2(𝑖)(𝑗)]) (6) 

𝑛𝑒𝑥𝑊𝑀 = 𝑊𝑀 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 × 𝑀𝐸𝑃 (7) 

𝑀𝐸𝑃𝑖𝑗 = {
1, if 𝑟𝑎𝑛𝑑𝑖𝑗 < 𝑒𝑥𝑝(𝐸𝑠𝑢𝑏(𝑖))

0, if 𝑟𝑎𝑛𝑑𝑖𝑗 ≥ 𝑒𝑥𝑝(𝐸𝑠𝑢𝑏(𝑖))
 (8) 

𝐸𝑠𝑢𝑏(𝑖) =
3 × (𝑃𝐹𝑖𝑡𝑖 −min(𝑃𝐹𝑖𝑡))

(max(𝑃𝐹𝑖𝑡) − min(𝑃𝐹𝑖𝑡))
− 3.5 (9) 

 

where 𝑖 is the number of water molecules; 𝑗 is the number of design variables; 𝑟𝑎𝑛𝑑(𝑖)(𝑗) is a 

random number chosen from the [-1, 1] interval; 𝑊𝑀 is the current set of water molecules; 

𝑛𝑒𝑤𝑊𝑀 is the newly generated set of water molecules; 𝑝𝑒𝑟𝑚𝑢𝑡𝑒1(𝑖)(𝑗) and 𝑝𝑒𝑟𝑚𝑢𝑡𝑒1(𝑖)(𝑗) 

are different rows permutation functions; 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 is the step size of movement of the water 

molecules; 𝑃𝐹𝑖𝑡  is the penalized objective function vector of the current set of water 

molecules; 𝑀𝐸𝑃 is the monolayer evaporation probability matrix; and 𝐸𝑠𝑢𝑏 is the subtrate 

interaction energy vector.  

Droplet evaporation phase: Generation of new water molecules (𝑛𝑒𝑤𝑊𝑀) based on the 

droplet evaporation strategy. This phase can be stated mathematically as follows:  

 

𝑛𝑒𝑥𝑊𝑀 = 𝑊𝑀 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 × 𝐷𝐸𝑃 (10) 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑 × (𝑊𝑀[𝑝𝑒𝑟𝑚𝑢𝑡𝑒1(𝑖)(𝑗)] −𝑊𝑀[𝑝𝑒𝑟𝑚𝑢𝑡𝑒2(𝑖)(𝑗)]) (11) 

𝐷𝐸𝑃𝑖𝑗 = {
1, if 𝑟𝑎𝑛𝑑𝑖𝑗 < 𝐽(𝜃𝑖)

0, if 𝑟𝑎𝑛𝑑𝑖𝑗 ≥ 𝐽(𝜃𝑖)
 (12) 

𝜃𝑖 =
30 × (𝑃𝐹𝑖𝑡𝑖 −min(𝑃𝐹𝑖𝑡))

(max(𝑃𝐹𝑖𝑡) − min(𝑃𝐹𝑖𝑡))
− 50 (13) 

𝐽(𝜃) =
1

2.6
× (

2

3
+
(cos(𝜃))3

3
− cos(𝜃))

−2/3

× (1 − cos(𝜃)) (14) 
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where 𝐷𝐸𝑃 is the droplet evaporation probability matrix; 𝐽(𝜃) is the evaporation flux vector; 

and 𝜃 is the contact angle of the water droplet.  

 

2.1.2.1 Ordered set theoretical water evaporation optimization (OST-WEO) 

Similar to the OST-ABC algorithm, the OST-WEO algorithm is based on the idea of 

dividing the population of candidate solutions into a number of well-arranged sub-

populations of the same size. The OST-WEO algorithm is stated in the following four steps: 

Step one (initialization): The initial population is generated randomly. 

Step two (forming the sub-populations): The sub-populations are formed based on the 

procedure described in the second step of the OST-ABC algorithm. 

Step three (main body of WEO): The main body of the WEO algorithm is performed 

for all the sub-populations separately. Therefore, 𝑚 sub-population, each of them containing 

𝑛𝑆 new candidate solutions, are generated. Next, the new sub-populations collectively form 

the population of new candidate solutions.  

Step four (termination criterion): If the termination criterion of the algorithm is 

satisfied, the algorithm is terminated; otherwise, the algorithm returns to step two. The 

maximum number of objective function evaluations (𝑀𝑎𝑥𝑁𝐹𝐸𝑠 ) is considered as the 

termination criterion of the algorithms. 

The pseudo code of the OST-WEO algorithm is provided as follows: 

Initialization: 

 Set the algorithm parameters: 𝑛𝐸, 𝑚, and 𝑀𝑎𝑥𝑁𝐹𝐸𝑠. 
 Generate random initial population of water molecules (𝑊𝑀) and evaluate them.  

 𝑁𝐹𝐸𝑠 = 0;  

Cyclic body of the algorithm: 

While 𝑁𝐹𝐸𝑠 < 𝑀𝑎𝑥𝑁𝐹𝐸𝑠 
 Sort the initial population in ascending order of penalized objective function. 

 Form the sub-populations based on the procedure described in the second step of the 

OST-ABC algorithm. 

If 𝑁𝐹𝐸𝑠 ≤ 𝑀𝑎𝑥𝑁𝐹𝐸𝑠/2 

 Generate the sub-populations of new water molecules (𝑛𝑒𝑤𝑊𝑀) based on the monolayer 

evaporation strategy using Eqs. (6) to (9). 

 Evaluate the newly generated water molecules (𝑛𝑒𝑤𝑊𝑀) and apply replacement strategy 

between old and new water molecules. 

 Update the number of objective function evaluations (𝑁𝐹𝐸𝑠 = 𝑁𝐹𝐸𝑠 + 𝑛𝐸).  

else 

 Generate the sub-populations of new water molecules (𝑛𝑒𝑤𝑊𝑀) based on the droplet 

evaporation strategy using Eqs. (10) to (14). 

 Evaluate the newly generated water molecules ( 𝑛𝑒𝑤𝑊𝑀 ) and apply replacement 

strategy between old and new water molecules. 

 Update the number of objective function evaluations (𝑁𝐹𝐸𝑠 = 𝑁𝐹𝐸𝑠 + 𝑛𝐸). 

End if 

 Collect the sub-populations and form the unified populations of water molecules. 

 Monitor the best water molecule found by the OST-WEO algorithm so far.  

End While 
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The steps of the OST-WEO algorithm is shown in Fig. 3. 

 

2.1.2.2 Set theoretical multi-phase water evaporation optimization (STMP-WEO) 

Similar to the STMP-ABC algorithm, the STMP-WEO is a multi-phase version of the OST-

WEO algorithm. The pseudo code of the STMP-WEO algorithm is provided as follows: 

Initialization: 

 Set the algorithm parameters: 𝑛𝐸, 𝑚, 𝑘, and 𝑀𝑎𝑥𝑁𝐹𝐸𝑠. 

 Generate random initial population of water molecules (𝑊𝑀) and evaluate them.  

 Specify the number of sub-populations in each phase (𝑛1, 𝑛2, ⋯ , 𝑛𝑘).  

 𝑖 = 0; 𝑁𝐹𝐸𝑠 = 0; 

Cyclic body of the algorithm: 

While 𝑖 < 𝑘 

 𝑖 = 𝑖 + 1;  

While 𝑁𝐹𝐸𝑠 < 𝑖 × 𝑀𝑎𝑥𝑁𝐹𝐸𝑠/𝑘 

 Sort the initial population in ascending order of penalized objective function. 

 Form the sub-populations of 𝑖 -th phase (𝑛𝑖  sub-populations) based on the procedure 

described in the second step of the OST-ABC algorithm.  

If 𝑁𝐹𝐸𝑠 ≤ 𝑀𝑎𝑥𝑁𝐹𝐸𝑠/2 

 Generate the sub-populations of new water molecules (𝑛𝑒𝑤𝑊𝑀) based on the monolayer 

evaporation strategy using Eqs. (6) to (9). 

 Evaluate the newly generated water molecules (𝑛𝑒𝑤𝑊𝑀) and apply replacement strategy 

between old and new water molecules. 

 Update the number of objective function evaluations (𝑁𝐹𝐸𝑠 = 𝑁𝐹𝐸𝑠 + 𝑛𝐸).  

else 

 Generate the sub-populations of new water molecules (𝑛𝑒𝑤𝑊𝑀) based on the droplet 

evaporation strategy using Eqs. (10) to (14). 

 Evaluate the newly generated water molecules (𝑛𝑒𝑤𝑊𝑀) and apply replacement strategy 

between old and new water molecules. 

 Update the number of objective function evaluations (𝑁𝐹𝐸𝑠 = 𝑁𝐹𝐸𝑠 + 𝑛𝐸). 

End if 

 Collect the sub-populations and form the unified populations of water molecules. 

 Monitor the best water molecule found by the STMP-WEO algorithm so far.  

End While 

End While 

The steps of the STMP-WEO algorithm is shown in Fig. 4.  
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Figure 3. Steps of the OST-WEO algorithm 
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Figure 4. Steps of the STMP-WEO algorithm 
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2.2 Definition of the optimization problems 

In order to investigate the performance of the set theoretical framework, the proposed 

algorithms are applied to solve three different structural optimization problems, including 

continuous optimization of dome-like truss structures with multiple frequency constraints 

and discrete size optimization of steel frame structures with strength and displacement 

constraints. The frame structures are designed based on the requirements of AISC load and 

resistance factor design (LRFD) specification for structural steel buildings [40]. The 

optimization problems are formulated mathematically as follows: 

 

2.2.1 Optimization of truss structures with frequency constraints 

Truss optimization problems with multiple frequency constraints are taken into account as 

complex problems. In such problems, the aim is to minimize the total weight of the truss 

structure while satisfying some constraints on natural frequencies. In a simultaneous size 

and shape truss optimization problem with continuous search space, the cross-section area of 

members and the coordinates of some nodes are considered as design variables, which can 

vary continuously in the search space. The topology of the structure is assumed to be fixed 

during the optimization process. The continuous truss optimization problem with frequency 

constraints can be defined mathematically as follows [9]: 

Find 

 
{𝐷} = [𝑑1, 𝑑2, … , 𝑑𝑛𝐷], 𝑑𝑖 ∈ 𝑆𝑖 (15) 

 

to minimize 

 

𝑃𝐹𝑖𝑡({𝐷}) = 𝑊({𝐷}) + 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝐷) (16) 

 

where 

 

𝑊({𝐷}) =∑𝜌𝑖 × 𝐴𝑖 × 𝐿𝑖

𝑛𝐸

𝑖=1

 (17) 

 

subject to 

 

{

𝑑𝑖
𝐿 ≤ 𝑑𝑖 ≤ 𝑑𝑖

𝑈

𝜔𝑘 ≤ 𝜔𝑘
∗

𝜔𝑗 ≥ 𝜔𝑗
∗

 (18) 

 

where {𝐷} is the candidate solution vector containing the set of design variables, including 

both cross-sectional areas and nodal coordinates; 𝑑𝑖  is the 𝑖-th design variable; 𝑛𝐷 is the 

number of design variables; and 𝑆𝑖  is the allowable range of 𝑖 -th design variable. 

𝑊({𝐷}), 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝐷), and 𝑃𝐹𝑖𝑡({𝐷}) denote the objective function (total structural weight), 

penalty function, and penalized objective function of the candidate solution {𝐷} , 

respectively. 𝑛𝑀 is the number of truss members; and 𝜌𝑖, 𝐴𝑖, and 𝐿𝑖 are the material density, 
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cross-sectional area, and length of the 𝑖-th truss element, respectively. 𝑑𝑖
𝐿  and 𝑑𝑖

𝑈  are the 

lower and upper bounds of the  𝑖-th design variable, respectively; 𝜔𝑗 and 𝜔𝑘 denote the 𝑗-th 

and 𝑘-th natural frequencies of the structure, respectively; 𝜔𝑗
∗  is the lower bound of 𝑗-th 

natural frequency; and 𝜔𝑘
∗  is the upper bound of 𝑘-th natural frequency. The design variable 

𝑑𝑖 can vary continuously within the range 𝑆𝑖. The range 𝑆𝑖 can be stated as: 

 

𝑆𝑖 = {𝑑𝑖|𝑑𝑖 ∈ [𝑑𝑖
𝐿 , 𝑑𝑖

𝑈]} (19) 

 

The free vibration analysis of a structural system results in the eigenvalue problem given 

by the following equation [9]:  

 

𝐾𝜙𝑖 = 𝛾𝑖𝑀𝜙𝑖 (20) 

 

where 𝐾 and 𝑀 are the stiffness and mass matrices of the structural system, respectively; 

and 𝜙𝑖  is the 𝑖-th eigenvector of the structural system. The 𝑖-th period (𝑇𝑖 ) and the 𝑖-th 

circular frequency (𝜔𝑖) are related to the 𝑖-th eigenvalue (𝛾𝑖) by the following equation: 

 

𝛾𝑖 = 𝜔𝑖
2 = (2𝜋/𝑇𝑖)

2 (21) 

 

In this research, one of the well-known constraint handling strategies, known as 

penalizing strategy, is employed to handle the problem constraints. In penalizing strategies, 

by using a penalty function, the infeasible solutions are penalized [41]. The penalty function 

is defined as follows: 

 

𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝐷) = (1 + ɛ1 × 𝜐)
ɛ2;  𝜐 =∑𝜐𝑖

𝑛𝐶

𝑖=1

 (22) 

 

where 𝑛𝐶 denotes the number of constraints of the problem; 𝜐 is the sum of the violation of 

all constraints; and 𝜐𝑖 is the violation of the 𝑖-th constraint. In this research, ɛ1 is set to unity. 

Also, ɛ2 is calculated by Eq. (23). The violation of the 𝑖-th constraint (𝜐𝑖) can be obtained 

from Eq. (24). This formulation indicates that 𝜐𝑖 is set to zero if 𝑖-th constraint is satisfied. 

 

ɛ2 = 1.5(1 +
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) (23) 

𝜐𝑖 = {
|1 −

𝜔𝑖
𝜔𝑖
∗| , the 𝑖 − th constraint is violated

0,                                                               otherwise

 (24) 

 

2.2.2 Discrete sizing optimization of steel frame structures 

The problem of discrete sizing optimization of steel frame structures can be expressed 

mathematically as follows [39]:  

Find 
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{𝐷} = [𝑑1, 𝑑2, … , 𝑑𝑛𝐷], 𝑑𝑖 ∈ 𝑅𝑖 (25) 

 

to minimize 

 

𝑃𝐹𝑖𝑡({𝐷}) = 𝑊({𝐷}) + 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝐷) (26) 

 

where 

 

𝑊({𝐷}) =∑𝜌𝑖 × 𝐴𝑖 × 𝐿𝑖

𝑛𝐸

𝑖=1

 (27) 

 

subject to  

 

𝑔𝑖({𝐷}) ≤ 0, 𝑖 = 1,2, … , 𝑛𝐶 (28) 

 

where {𝐷}, 𝑑𝑖, 𝑛𝐷, 𝑊({𝐷}), 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝐷), and 𝑃𝐹𝑖𝑡({𝐷}) are defined similar to those in Eqs. 

(15), (16), and (17). 𝑛𝑀 is the number of frame members; 𝜌𝑖 , 𝐴𝑖 , and 𝐿𝑖  are the material 

density, cross-sectional area, and length of the 𝑖-th frame element, respectively; 𝑅𝑖 denotes 

the allowable set of values for the design variable 𝑑𝑖 ; 𝑛𝐶  is the number of problem 

constraints; and 𝑔𝑖({𝐷}) represents design constraints including strength constraints of the 

AISC-LRFD specification [40] and displacement constraints. Similar to the truss problems, 

the penalty function is defined based on Eq. (22). The design variable 𝑑𝑖 is selected from a 

countable set of discrete values (denoted by 𝑅𝑖): 
 

𝑅𝑖 = {𝑟𝑖,1, 𝑟𝑖,2, 𝑟𝑖,3, … , 𝑟𝑖,𝑛𝑉(𝑖)} (29) 

 

where 𝑛𝑉(𝑖) is the number of available discrete values for the design variable 𝑑𝑖.  
According to the provisions of the AISC-LRFD specification [40], design constraints are 

summarized as follows: 

 Maximum lateral displacement constraint: 

 
∆𝑇
𝐻
− 𝑅𝐻 ≤ 0 (30) 

 

where 𝛥𝑇 is the maximum lateral displacement (lateral displacement of the roof); 𝐻 is the 

height of the structure; and RH is the maximum drift index, which is equal to 1/300. 

 Inter-story displacement constraints: 

 
𝑑𝑖
ℎ𝑖
− 𝑅𝑖 ≤ 0, 𝑖 = 1,2, … , 𝑛𝑆 (31) 

 

where 𝑑𝑖 is the inter-story drift of 𝑖-th story of the structure; ℎ𝑖 is the height of 𝑖-th story of 

the structure; 𝑛𝑆 is the total number of stories; and 𝑅𝑖 is the allowable inter-story drift index 
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of 𝑖-th story of the structure as given by the code of the practice. 

 Strength constraints: 

 

{
 
 

 
 

𝑃𝑢
2𝜙𝑐𝑃𝑛

+ (
𝑀𝑢𝑥

𝜙𝑏𝑀𝑛𝑥

+
𝑀𝑢𝑦

𝜙𝑏𝑀𝑛𝑦

) ≤ 1,          for    
𝑃𝑢
𝜙𝑐𝑃𝑛

< 0.2

𝑃𝑢
𝜙𝑐𝑃𝑛

+
8

9
(
𝑀𝑢𝑥

𝜙𝑏𝑀𝑛𝑥

+
𝑀𝑢𝑦

𝜙𝑏𝑀𝑛𝑦

) ≤ 1,          for    
𝑃𝑢
 𝜙𝑐𝑃𝑛

≥ 0.2
}
 
 

 
 

 (32) 

 

where 𝑃𝑢 and 𝑃𝑛 are the required axial strength and the nominal axial strength (tension or 

compression), respectively; 𝑀𝑢𝑥 and 𝑀𝑛𝑥 are the required flexural strength and the nominal 

flexural strength about the 𝑥  axis, respectively; 𝑀𝑢𝑦  and 𝑀𝑛𝑦  are the required flexural 

strength and the nominal flexural strength about the 𝑦 axis, respectively; 𝜙𝑐 is the resistance 

factor (𝜙𝑐= 0.9 for tension, 𝜙𝑐= 0.85 for compression); and 𝜙𝑏 is the resistance factor for 

flexure (𝜙𝑏= 0.90). It should be noted that �̅�𝑛𝑦 = 0 for two-dimensional frames. 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Optimization problems  

Three benchmark structural optimization problems are considered from literature: 

continuous size optimization of a 120-bar dome-like truss structure with multiple frequency 

constraints; simultaneous size and layout optimization of a 52-bar dome-like truss structure 

with multiple frequency constraints; and discrete size optimization of a 3-bay 15-story steel 

frame structure with strength and displacement constraints. The maximum number of 

objective function evaluations (𝑀𝑎𝑥𝑁𝐹𝐸𝑠) is considered as the stopping criterion of the 

algorithms. The value of 𝑀𝑎𝑥𝑁𝐹𝐸𝑠 is set to 20000 for all problems. However, in some 

cases, the number of performed evaluations may be much larger than the required ones. To 

ensure fair comparison of the performance of the algorithms, ten independent runs have been 

executed for each algorithm, and the results of the best run have been reported. Initial 

population is generated randomly. Weight convergence histories are provided and a 

magnified part is attached to convergence curves to display better curves. For each problem, 

optimized results at five different stages of the optimization process are provided, which 

allows comparing the performance of the algorithms. The algorithms, as well as finite 

elements analysis codes, are implemented in Matlab.  

 

3.1.1 Example 1: 120-bar dome-like truss 

The first example is size optimization of a 120-bar dome-like truss shown in Fig. 5. The 

layout of the structure is kept unchanged during the optimization process. Non-structural 

masses are attached to all free nodes of the dome as follows: 3000 𝑘𝑔 at node one, 500 𝑘𝑔 at 

nodes 2 through 13, and 100 𝑘𝑔 at remaining nodes. Table 1 lists the material properties, 

variable bounds, and frequency constraint for this problem. The first two natural frequencies 

of the structure are considered as the problem constraints. All the dome members are 

categorized into seven groups considering the symmetry of the structure. The minimum and 
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maximum allowable cross-sectional area of members are considered to be 1 𝑐𝑚2 and 129.3 

𝑐𝑚2, respectively. This problem has been studied by different researchers including Kaveh 

and Ilchi Ghazaan [23] using vibrating particles system (VPS) and Kaveh et al. [9] using 

enhanced variants of the TLBO algorithm. 

Table 2 presents the optimal design results for the 120-bar dome-like truss. The results 

indicate that OST-ABC performs better than ABC and STMP-ABC in terms of best weight, 

average weight, and worst weight of 10 independent runs. In addition, the OST-WEO and 

STMP-WEO have gained better results compared to the basic WEO in terms of best weight, 

average weight, and worst weight. A close examination of Table 2 confirms that the ABC 

algorithm and its set theoretical variants have better results than the WEO algorithm and its 

set theoretical variants in the present example. The first five natural frequencies of the 

optimal designs obtained by the proposed algorithms for the 120-bar dome-like truss are 

listed in Table 3. None of the frequency constraints are violated, as expected. Table 4 

provides the optimized weights found by the ABC and WEO algorithms and their set 

theoretical variants at five different stages of the optimization process. It can be seen that the 

set theoretical variants of ABC and WEO converge faster than their basic versions. Figs. 6 

and 7 compares the convergence curves of the average of 10 runs for the ABC and WEO 

algorithms and their set theoretical variants. As Fig. 6 demonstrates, the set theoretical 

variants of ABC have higher convergence rates compared to the basic ABC. Similarly, Fig. 

7 indicates that the set theoretical variants of WEO converge faster than the basic WEO. 

 

 
Figure 5. Schematic of the 120-bar dome-like truss 
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Table 1: Material properties, variable bounds, and frequency constraints of the 120-bar truss 

Property / Unit Value 

𝐸 (Modulus of elasticity) / 𝐺𝑃𝑎 210 

𝜌 (Material density) / 𝑘𝑔 𝑚3⁄  7971.81 

Added mass / 𝑘𝑔 
3000 𝑘𝑔 at node 1, 500 𝑘𝑔 at nodes 2-

13, 100 𝑘𝑔 at remaining nodes 

Lower bound of design variables / 𝑐𝑚2  1 

Upper bound of design variables / 𝑐𝑚2  129.3 

Frequency constraints / 𝐻𝑧 𝜔1 ≥ 9, 𝜔2 ≥ 11 

 
Table 2: Comparison of optimization results for the 120-bar dome-like truss 

Element group 

Cross-sectional areas (𝑐𝑚2) 

ABC 
OST-

ABC 

STMP-

ABC 
WEO 

OST-

WEO 

STMP-

WEO 

1 19.35 19.55 19.34 19.44 19.30 19.32 

2 40.76 40.30 41.03 40.49 41.04 40.81 

3 10.55 10.65 10.62 10.89 10.61 10.76 

4 21.15 21.26 21.09 21.29 20.93 21.28 

5 9.99 9.78 9.82 9.86 9.97 9.92 

6 11.99 11.80 11.86 11.58 11.82 11.77 

7 14.66 14.70 14.76 14.63 14.91 14.56 

Best weight (𝑘𝑔) 8709.98 8709.18 8709.53 8712.51 8711.68 8710.10 

Worst weight (𝑘𝑔) 8718.29 8716.16 8718.77 8726.18 8722.12 8721.82 

Average weight (𝑘𝑔) 8713.34 8711.97 8713.30 8717.06 8715.54 8716.77 

S.D. (𝑘𝑔) 2.88 2.55 2.44 3.71 3.54 3.82 

No. of analyses 20000 20000 20000 20000 20000 20000 

No. of runs 10 10 10 10 10 10 

 
Table 3: Natural frequencies (𝐻𝑧) of the optimal designs for the 120-bar dome-like truss 

Frequency 

number 

Natural frequencies (𝐻𝑧) 

ABC OST-ABC STMP-ABC WEO OST-WEO STMP-WEO 

1 9.0003 9.0001 9.0001 9.0023 9.0011 9.0001 

2 11.0002 11.0001 11.0003 11.0002 11.0006 11.0000 

3 11.0002 11.0002 11.0003 11.0002 11.0006 11.0000 

4 11.0006 11.0002 11.0003 11.0011 11.0009 11.0006 

5 11.0678 11.0664 11.0669 11.0673 11.0685 11.0671 

 
Table 4: Optimized results at different stages of optimization for the 120-bar dome-like truss 

(best run) 

No. of analyses 

Optimized weight (𝑘𝑔) 

ABC 
OST-

ABC 

STMP-

ABC 
WEO 

OST-

WEO 

STMP-

WEO 

4000 10675.73 10132.16 9495.41 9588.41 8816.32 8830.88 
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8000 8823.50 8750.70 8770.52 8925.64 8731.28 8730.16 

12000 8727.99 8712.82 8716.03 8734.53 8719.28 8723.11 

16000 8712.40 8709.60 8710.82 8712.51 8713.56 8710.21 

20000 8709.98 8709.18 8709.53 8712.51 8711.68 8710.10 

 

 
Figure 6. Convergence histories of the 120-bar dome-like truss obtained by the ABC, OST-ABC, 

and STMP-ABC algorithms 

 

 
Figure 7. Convergence histories of the 120-bar dome-like truss obtained by the WEO, OST-

WEO, and STMP-WEO algorithms 
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3.1.2 Example 2: 52-bar dome-like truss 

Fig. 8 shows initial layout of a 52-bar dome-like truss considered as the second example. 

This is a simultaneous size and layout optimization problem. Cross-sectional area of 

members and nodal coordinates are considered as design variables. A non-structural mass of 

50 𝑘𝑔 is attached to all free nodes. The material properties, variable bounds, and frequency 

constraints are provided in Table 5. Due to the symmetry of the structure, all members of the 

dome are categorized into eight groups, as shown in Table 6. All free nodes are allowed to 

move ±2 𝑚  from their initial position in a symmetrical manner. Hence, this is a 

configuration optimization problem with 13 design variables (five layout variables and eight 

sizing variables) and two constraints on the first two natural frequencies. The cross-sectional 

area of the members can vary continuously between 1 𝑐𝑚2  and 10 𝑐𝑚2 . This is a well-

known problem studied by many researchers using different algorithms: Miguel and Fadel 

Miguel [20] employing harmony search (HS) and firefly algorithm (FA), Kaveh and Ilchi 

Ghazaan [22] utilizing an improved ray optimization (IRO) algorithm, and Kaveh and 

Zolghadr [24] using the cyclical parthenogenesis algorithm (CPA).  

Table 7 compares the optimal design results for the 52-bar dome-like truss. The results 

show that OST-ABC and STMP-ABC have gained better results compared to the basic ABC 

in terms of best weight, average weight, and worst weight of 10 independent runs. In 

addition, the OST-ABC performs better than STMP-ABC in terms of best weight and 

average weight. Comparing the final results of the basic WEO with those of its set 

theoretical variants confirms that OST-WEO perform considerably better than the other 

methods, especially in terms of average weight, worst weight, and standard deviation. It can 

be concluded from the optimization results that the WEO algorithm and its set theoretical 

variants have better performance compared to the ABC algorithm and its set theoretical 

variants in this example. Table 8 lists the first five natural frequencies of the optimal designs 

obtained by the proposed algorithms for the 52-bar dome-like truss. The table confirms that 

all the frequency constraints are fulfilled, as expected. Also, the table indicates that the 

constraint on the second natural frequency controls the design process. The optimized 

weights found by the ABC and WEO algorithms and their set theoretical variants at five 

different stages of the optimization process are provided in Table 9. As the table 

demonstrates, in the early iterations, the set theoretical variants have slower rates of 

convergence compared to the basic versions, whereas, within the next iterations, the set 

theoretical variants converge more effectively than the basic versions. Figs. 9 and 10 provide 

a comparison between the convergence curves of set theoretical variants with those of the 

basic versions. As Fig. 6 shows, the set theoretical variants of ABC converge faster than the 

basic. Fig. 10 indicates that OST-WEO has better convergence rate compared to that of the 

WEO and STMP-WEO.  
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Figure 8. Schematic of the initial layout of the 52-bar dome-like truss: (a) Top view, (b) Side 

view 

 

Table 5: Material properties, variable bounds, and frequency constraints of the 52-bar truss 

Property / Unit Value 

𝐸 (Modulus of elasticity) / 𝐺𝑃𝑎 210 

𝜌 (Material density) / 𝑘𝑔 𝑚3⁄  7800 

Added mass / 𝑘𝑔 50 

Lower bound of design variables / 𝑐𝑚2 1 

Upper bound of design variables / 𝑐𝑚2 10 

Frequency constraints / 𝐻𝑧 𝜔1 ≤ 15.916, 𝜔2 ≥ 28.648 

 
Table 6: Element grouping of the 52-bar dome-like truss 

Group number Elements of the group 

𝐴1  1-4 

𝐴2  5-8 

𝐴3  9-16 

𝐴4  17-20 

𝐴5  21-28 

𝐴6  29-36 

𝐴7  37-44 

𝐴8  45-52 

 
Table 7: Comparison of optimization results for the 52-bar dome-like truss 

Design variable 

Coordinates (𝑚) and cross-sectional areas (𝑐𝑚2) 

ABC 
OST-

ABC 

STMP-

ABC 
WEO 

OST-

WEO 

STMP-

WEO 

𝑍𝐴 (𝑚)  6.19 6.07 5.98 5.94 5.91 5.99 

𝑋𝐵 (𝑚)  2.21 2.26 2.30 2.31 2.30 2.24 
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𝑍𝐵 (𝑚)  4.05 4.03 4.01 4.04 3.98 4.01 

𝑋𝐹  (𝑚)  3.86 3.80 3.72 3.76 3.71 3.80 

𝑍𝐹  (𝑚)  2.50 2.50 2.50 2.50 2.50 2.50 

𝐴1 (𝑐𝑚
2)  1.00 1.00 1.00 1.00 1.00 1.01 

𝐴2 (𝑐𝑚
2)  1.18 1.12 1.14 1.08 1.12 1.13 

𝐴3 (𝑐𝑚
2)  1.27 1.20 1.27 1.20 1.21 1.21 

𝐴4 (𝑐𝑚
2)  1.32 1.39 1.48 1.49 1.46 1.43 

𝐴5 (𝑐𝑚
2)  1.47 1.41 1.48 1.46 1.40 1.40 

𝐴6 (𝑐𝑚
2)  1.00 1.00 1.00 1.01 1.00 1.00 

𝐴7 (𝑐𝑚
2)  1.45 1.48 1.44 1.44 1.49 1.48 

𝐴8 (𝑐𝑚
2)  1.45  1.49 1.43 1.48 1.48 1.49 

Best weight (𝑘𝑔) 194.26 193.59 193.81 193.98 193.63 193.91 

Worst weight (𝑘𝑔) 204.56 203.93 203.92 204.08 197.28 203.65 

Average weight (𝑘𝑔) 200.40 198.70 200.02 197.51 194.87 196.82 

S.D. (𝑘𝑔) 3.96 4.17 3.99 2.99 1.00 2.85 

No. of analyses 20000 20000 20000 20000 20000 20000 

No. of runs 10 10 10 10 10 10 

 
Table 8: Natural frequencies (𝐻𝑧) of the optimal designs for the 52-bar dome-like truss 

Frequency number 

Natural frequencies (𝐻𝑧) 

ABC 
OST-

ABC 

STMP-

ABC 
WEO 

OST-

WEO 

STMP-

WEO 

1 11.1584 11.4701 11.6100 11.8206 11.9010 11.5448 

2 28.6485 28.6484 28.6513 28.6500 28.6483 28.6534 

3 28.6486 28.6486 28.6517 28.6519 28.6489 28.6534 

4 28.6631 28.6509 28.6574 28.6531 28.6681 28.6554 

5 28.7050 28.6874 28.7333 29.0592 28.9014 29.0268 

 
Table 9: Optimized results at different stages of optimization for the 52-bar dome-like truss (best 

run) 

No. of analyses 

Optimized weight (𝑘𝑔) 

ABC 
OST-

ABC 

STMP-

ABC 
WEO 

OST-

WEO 

STMP-

WEO 

4000 294.24 475.74 406.62 335.82 441.95 350.12 

8000 202.89 215.50 200.64 247.94 253.84 257.61 

12000 196.22 195.96 194.50 207.63 207.41 202.90 

16000 194.53 193.66 194.04 195.43 194.47 195.86 

20000 194.26 193.59 193.81 193.98 193.63 193.91 
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Figure 9. Convergence histories of the 52-bar dome-like truss obtained by the ABC, OST-ABC, 

and STMP-ABC algorithms 

 

 
Figure 10. Convergence histories of the 52-bar dome-like truss obtained by the WEO, OST-

WEO, and STMP-WEO algorithms 

 

3.1.3 Example 3: 3-bay 15-story steel frame 

Fig. 11 shows the configuration and loading conditions of a 3-bay 15-story steel frame 

structure consisting of 64 joints and 105 members. The columns are grouped into ten column 
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groups, whereas all beams are considered to form only one beam group, as shown in Fig. 11. 

Column groups are formed in a way that the exterior columns of each three consecutive 

stories (starting from the foundation) form one column group. In a similar way, the interior 

columns of each three consecutive stories form one column group. Therefore, the problem 

has 11 discrete design variables. All design variables (element groups) are chosen from 267 

W-sections. The steel has a yield stress of 𝐹𝑦 = 36 𝑘𝑠𝑖 and a modulus of elasticity equal to 

𝐸 = 29000 𝑘𝑠𝑖. The frame is subjected to strength and displacement constraints based on 

the AISC-LRFD requirements. The non-braced length of beam elements is considered to be 

equal to one-fifth of the span length. Column elements have no lateral restraint along their 

lengths. The effective length factor of columns in a sway-permitted frame is calculated as 

𝐾𝑥 ≥ 1 by using the approximation equation proposed by Dumonteil [42] and the out-of-

plane effective length factor is specified as 𝐾𝑦 = 1. An additional displacement constraint is 

imposed on the sway of the top story, which is limited to 9.25 in. This problem has been 

solved with various methods by different researchers: Kaveh and Talatahari using CSS [30], 

Kaveh and Ilchi Ghazaan using CBO and ECBO [35], Kaveh and Bakhshpoori using an 

accelerated water evaporation optimization [37], and Kaveh and Ilchi Ghazaan using VPS 

[38]. 

Table 10 compares the optimal design results for the 3-bay 15-story steel frame. The 

results indicate that the weight of the basic ABC is slightly better than those of the OST-

ABC and STMP-ABC, but OST-ABC and STMP-ABC have better performance in terms of 

the average weight, worst weight, and standard deviation compared to those of the basic 

ABC. In addition, the set theoretical variants of WEO perform better than the basic WEO in 

all aspects. Comparing the results obtained by the OST-WEO with those of the STMP-WEO 

confirms that the OST-WEO has better performance. It can be concluded from the results 

that the WEO algorithm and its set theoretical variants perform better than the ABC 

algorithm and its set theoretical variants in this example. Table 11 provides the optimized 

design weights found by the algorithms at five different stages of the optimization process. 

Figs. 12 and 13 provide a comparison between the convergence curves of the basic version 

of ABC and WEO with those of their set theoretical variants. The STMP-ABC converges 

considerably faster than WEO and OST-WEO. In addition, as Fig. 13 shows, in the early 

iterations, OST-WEO and STMP-WEO have slower rates of convergence compared to the 

basic WEO, whereas, within the last iterations, the set theoretical variants converge more 

effectively than the basic WEO. Fig. 14 shows the inter-story drifts for the best design of the 

3-bay 15-story frame obtained by OST-WEO. As Fig. 14 confirms, all the inter-story drift 

constraints are fulfilled. Fig. 15 shows the stress ratios for the best design of the 3-bay 15-

story frame obtained by OST-WEO. A close examination of Figs. 14 and 15 reveals that 

stress constraints control the design of the 3-bay 15-story steel frame. 
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Figure 11. the 3-bay 15-story steel frame structure 
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Table 10: Comparison of optimization results for the 3-bay 15-story frame 

Element group ABC OST-ABC 
STMP-

ABC 
WEO 

OST-

WEO 

STMP-

WEO 

1 W14×99 W14×99 W16×89 W16×89 W14×99 W24×117 

2 W27×161 W27×161 W36×170 W36×170 W24×162 W27×146 

3 W12×79 W12×79 W12×79 W12×79 W12×79 W27×84 

4 W27×114 W27×114 W21×111 W33×118 W24×104 W24×104 

5 W24×68 W14×61 W14×61 W24×68 W14×61 W16×67 

6 W18×86 W30×90 W30×90 W12×87 W30×90 W18×86 

7 W8×48 W10×45 W16×50 W14×48 W21×48 W10×49 

8 W21×68 W24×68 W21×68 W24×68 W21×68 W12×65 

9 W8×28 W14×34 W8×28 W12×30 W8×35 W8×31 

10 W10×39 W18×35 W10×39 W8×40 W14×38 W10×39 

11 W21×44 W21×44 W21×44 W21×44 W21×44 W21×44 

Best weight (𝑙𝑏) 87814 87883 87883 88366 87748 87893 

Worst weight (𝑙𝑏) 96060 93381 92932 91434 90120 90418 

Average weight (𝑙𝑏) 90659 90065 90029 89185 88856 89037 

S.D. (𝑙𝑏) 2595 1869 1907 933 669 777 

No. of analyses 20000 20000 20000 20000 20000 20000 

No. of runs 10 10 10 10 10 10 

 

Table 11: Optimized results at different stages of optimization for the 3-bay 15-story frame (best run) 

No. of 

analyses 

Optimized weight (𝑙𝑏) 

ABC OST-ABC STMP-ABC WEO OST-WEO STMP-WEO 

4000 118143 122515 113633 97762 95665 101382 

8000 97416 99675 95442 91783 89906 97742 

12000 91203 91890 91893 91254 89009 93750 

16000 88780 89335 88918 89389 88737 88445 

20000 87814 87883 87883 88366 87748 87893 

 

 
Figure 12. Convergence histories of the 3-bay 15-story steel frame obtained by the ABC, OST-

ABC, and STMP-ABC algorithms 
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Figure 13. Convergence histories of the 3-bay 15-story steel frame obtained by the WEO, OST-

WEO, and STMP-WEO algorithms 

 

 
Figure 14. Inter-story drifts for the 3-bay 15-story steel frame obtained by OST-WEO (best run) 

 

 
Figure 15. Stress ratios for the 3-bay 15-story steel frame obtained by OST-WEO (best run) 
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4. CONCLUSION 
 

In this paper, set theoretical variants of the artificial bee colony (ABC) and water 

evaporation optimization (WEO) algorithms were proposed. The set theoretical variants 

were designed based on a simple general set theoretical framework proposed by Kaveh et al. 

[9]. The set theoretical framework, which is applicable to almost all population-based 

optimization algorithms, makes it possible to design various versions of a P-metaheuristic. 

The main idea of the set theoretical variants is based on the division of the initial population 

into a number of smaller well-arranged sub-populations with the aim of improving the 

balance between the diversification and the intensification of the search space. In order to 

verify the validity and efficiency of the proposed algorithms, some benchmark structural 

optimization problems, including two frequency-constrained truss optimization problems 

and one steel frame structure with displacement and strength constraints, were studied. The 

results show that the set theoretical variants of ABC and WEO have better the convergence 

characteristics compared to their basic versions. It can be concluded from the optimization 

results that the OST variant of the ABC and WEO algorithms have better performance 

compared to the corresponding STMP variants.  
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