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ABSTRACT 
 

Nowadays, the optimal design of structures based on reliability has been converted to an 

active topic in structural engineering. The Reliability-Based Design Optimization (RBDO) 

methods provide the structural design with lower cost and more safety, simultaneously. In 

this study, the optimal design based on reliability of dome truss structures with probability 

constraint of the frequency limitation is discussed. To solve the RBDO problem, nested 

double-loop method is considered; one of the loops performs the optimization process and 

the other one assesses the reliability of the structure. The optimization process is 

implemented using ECBO and EVPS algorithms and the reliability index is calculated using 

the Monte Carlo simulation method. Finally, the size and shape reliability-based 

optimization of 52-bar and 120-bar dome trusses has been investigated. 
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1. INTRODUCTION 
 

Nowadays, due to the fact that optimization problems are very important, its application in 

engineering sciences and optimal design of structures has been considered more than before. 

                                                   
*Corresponding author: Centre of Excellence for Fundamental Studies in Structural Engineering, School of 

Civil Engineering, Iran University of Science and Technology, Narmak, Tehran-Postal Code 16846-

13114, Iran 
†E-mail address: alikaveh@iust.ac.ir (A. Kaveh) 



S. R. Hoseini Vaez, P. Hosseini, M.A. Fathali,  A. Asaad Samani and A. Kaveh 702 

The main purpose of optimal design of structures is to use the most efficient optimization 

methods to achieve the most economical design while providing all the constraints. 

Eventually, this design in addition to providing the necessary constraints for each problem 

significantly reduces construction costs and avoids wasting materials. In recent years, many 

researchers have used meta-heuristic algorithms to perform optimization problems and the 

usage of these algorithms in solving optimization problems has been developed. Meta-

heuristic algorithms can solve many different problems and the ability of these algorithms to 

cover the search space and avoid local optima has led to finding appropriate answers; 

therefore, the use of meta-heuristic algorithms is an appropriate method to perform optimal 

designs. Various types of these algorithms have been developed in recent decades [1-8]. 

Safety has always been one of the main goals in the design of structures. Structures 

confront with many uncertainties, so it is difficult to achieve a completely safe design; 

reliability theory is used to consider the effect of these uncertainties. Reliability is a theory 

that evaluates the probability of structural failures due to the uncertainty of design 

parameters and in order to determine the level of system safety, it uses an index called the 

reliability index. In the reliability evaluation, if a structure is designed with sufficient safety, 

the considered probabilistic variables satisfy all the constraints of the problem. By 

considering the uncertainties in the design variables, the design can be created based on a 

reliability level (Reliability-Based Design Optimization). Optimal design of structures based 

on reliability is an issue that has recently been developed by researchers to optimize 

structural systems. To solve RBDO optimization problems, various methods are proposed 

which are divided into three categories: double-loop, single-loop and decoupled. 

The single-loop method used by Fan Li et al. to perform the optimal design based on 

reliability, converts the probabilistic constraints into approximate deterministic constraints, 

and the RBDO problem becomes a deterministic design optimization (DDO) problem in 

single loop [9]. In the double-loop method, using the outer optimization loop, the inner 

reliability analysis loop is performed and replicated [10, 11]. The reliability analysis loop is 

a separate problem that can be evaluated using direct methods such as the reliability index 

approach [11] or inverse methods such as the inverse reliability strategy [12, 13]. In the 

double-loop method, it is very important to select an optimization algorithm in the 

optimization loop to solve a specific RBDO problem [10]. Kaveh and Ilchi proposed a 

model for reliability based design optimization problem using several meta-heuristic 

algorithms. The meta-heuristic algorithms used to calculate the reliability index were IRO, 

DPSO, CBO and ECBO. The results show that the proposed algorithms have a desirable 

performance [14]. Keshtegar evaluated the nonlinear probabilistic constraints of RBDO 

problems to improve the performance of the inverse reliability method. In the paper, a 

Modified Mean Value (MMV) method based on the double-loop method for evaluating the 

reliability of RBDO is proposed [15]. Gholizadeh and Aligholizadeh performed an optimal 

seismic design based on reliability. They used CECBO and ECBO algorithms and Monte 

Carlo simulation method to solve the RBDO problem and investigated the efficiency of the 

proposed method for reinforced concrete moment frames [16]. The sequential optimization 

and reliability assessment (SORA) is one of the RBDO problem solving methods. In this 

approach, a decoupled strategy including optimization and reliability assessment is used 

[17]; which the problem is divided into a sequential optimization loop and a reliability 

assessment loop. Vinh Ho et al. proposed a new hybrid method (SORA-ICDE) to solve 
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RBDO problems of truss structures. This method is a combination of SORA method and 

improved constrained differential evolution algorithm (ICDE) which helps to improving the 

efficiency of SORA method and convergence of optimal solution. [18]. In another study, 

they also investigated the optimal design of truss structures based on the reliability. In their 

study, the optimization problem is defined by considering the frequency constraints under 

uncertainty of loading and material properties. They also proposed a double-loop method 

with a new combination of improved differential evolution algorithm, which uses the inverse 

reliability method to solve this problem [19]. Bataleblu and Ebrahimi presented an enhanced 

version of the SORA method to improve computational efficiency and expand the scope of 

SORA application. In the mentioned approach, a criterion is used to identify the 

probabilistic constraints and separate the satisfied constraints from the reliability assessment 

loop to reduce the computational costs [20]. Today, the wide range of applications of truss 

structures in structural engineering has made their optimal design valuable. The use of 

RBDO methods also makes it possible to design the best structure with the lowest cost and 

maximum reliability for truss structures. In solving the optimization problems of truss 

structures with frequency constraints, minimizing the total weight of the structure while 

satisfying the frequency constraints has been studied and is important. In this type of 

optimization problems, the frequency constraints applied to prevent the phenomenon of 

structural resonance as much as possible [21]. 

In this study, the optimal design of dome truss structures based on reliability is performed 

by considering the probability constraint of the frequency limitation. The method considered 

to solve this RBDO problem is the nested double-loop method. The Monte Carlo simulation 

method is used to calculate the reliability index, which is a suitable method for analyzing the 

reliability of structures. The optimization process is performed using Enhanced Colliding 

Bodies Optimization (ECBO) algorithm and Enhanced Vibrating Particles System (EVPS) 

algorithm. To evaluate the optimal design based on reliability, two numerical examples of 

52-bar and 120-bar dome trusses have been considered. 
 

 

2. RELIABILITY-BASED DESIGN OPTIMIZATION PROBLEM 
 

2.1 Reliability assessment 

The reliability assessment of the structure is one of the applications of reliability theory for 

evaluating the structural safety. The RBDO is the optimal design of a structure considering 

the probability variables; this topic of structural engineering has recently attracted the 

attention of many researchers. Probabilistic uncertainties of structural parameters such as 

material properties, external loads, geometric dimensions, etc. affect the final design and the 

safety of structural systems; therefore, to evaluating structural reliability, parameters with 

uncertainty are considered as random variables which each of them include a statistical 

distribution. Due to the random behavior of these variables, it is not possible to determine 

the safety or failure of the structure certainly; in this way the possibility of structural failure 

is evaluated. In general, in the optimization method based on reliability theory design safety 

is evaluated based on the probability of failure and uncertainties are modeled with 

probabilistic distribution of random variables. Satisfying of each problem constraints by the 

structure considering probabilistic uncertainties indicates the value of safety of structure. To 
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investigate the probability of satisfying one of the considered constraints, a function of 

random variables (X) called limit state function (g (X)) is defined as Eq. (1): 

 

(1) ( )g R Q X  

 

where, R is the value of system's ability to satisfy the considered constraint and Q is the 

constraint limit. If the value of g is positive (g > 0), the system is in the safe region and if the 

value of g is negative or zero (g ≤ 0), the system is in the unsafe (failure) region. Also, R and 

Q can represent the values of strength and loading results on the structure, respectively. In 

fact, structural reliability assessment can determine appropriate estimation of the safety level 

of the structure by changing the applied loads and strength. One of the methods for 

evaluating the reliability of structures is the Monte Carlo simulation method which is a 

computational algorithm uses random sampling to calculate the results. In this method, first 

N samples are generated based on random variables and then the limit state function is 

calculated for each sample. Finally, the probability of structural failure is obtained by 

dividing the number of failure region samples (Nf) by the total number of selected samples 

(N) according to Eq. (2).  

 

(2)    
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In Eq. (2), I is an index function. If the limit state function for the ith sample of random 

variables (g(Xi)) is positive, the value of I is equal to zero, otherwise it is 1. Finally, the 

reliability index is calculated by Eq. (3). 

 

(3) 1(1 )fP    
 

where, Φ-1 is the inverse of the normal cumulative distribution function. 

 

2.2 Formulation of RBDO problem 

The RBDO problem is defined as follows: 

Find                 : x  

To minimize    : x( )f   

Subject to         :   Pf  i i( ) 0 ( ), i 1,2,...,g K,X n     

where, x( )f  is the objective function; K is the vector of random parameters; X is the 

vector of variables; gi is the ith constraint function; n is the number of probabilistic 

constraints; Φ is the standard cumulative function of the normal distribution; 
i

jβ  is the target 

reliability index for the ith probabilistic constraint; μ is the mean of these variables. In this 

study, f is considered as the weight of the structure.   
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3. META-HEURISTIC OPTIMIZATION ALGORITHM 
 

3.1 ECBO algorithm 

In this study, an efficient meta-heuristic optimization algorithm called ECBO has been used. 

Kaveh and Ilchi Ghazan [2] proposed the ECBO algorithm to improve convergence and 

performance of CBO (Colliding Bodies Optimization) by adding a memory to store some of 

the best solutions during the optimization process. The ECBO steps are as follows:  

1. The initial positions of all colliding bodies (CBs) are randomly determined in an m-

dimensional search space, using Eq. (4). 

2. The value of the mass for each CB is calculated by Eq. (5). 

3. Colliding memory is obtained to store some of the best CB vectors. Solution vectors 

stored in colliding memory are added to the population and the same number of the 

current worst CBs is removed. Eventually, CBs are sorted in descending order of mass. 

4. CBs are divided into two groups: (a) Stationary group, (b) Moving group. 

5. The velocities of stationary and moving bodies before collision and after this are 

calculated using Eqs. (6) and (7). 

6. The new position of each CB is calculated by Eq. (9). 

 

(4) 0

min max min( ), 1,2,...,i rand i n   X X X X  
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(8) 
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1
iter
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(9) 
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i i irand V  X X ,  
M M M
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i i irand V  X X  

(10) min max min.( )i

j rand  X X X X  

 

where, 
0

iX is the initial solution vector of the ith CB; rand is a random vector in the [0, 1] 

range; Xmax and Xmin are the upper and lower bounds of design variables in the search space, 

respectively; n is the number of CBs; F(Xi) is the objective function value of the ith CB; ε is 

a coefficient that decreases linearly from one to zero as shown in Eq. (8); iter is the current 

number of iterations; itermax is the total number of iterations; In ECBO, the Pro parameter is 

introduced in the [0, 1] range, and specifies whether each variable should change. In this 

study, the value of Pro is set to 0.25. For each CB, Pro is compared to rni; rni is a random 

number that is uniformly distributed in the [0, 1] range. If rni <Pro, one dimension of the ith 

CB is randomly selected and its value is recalculated by Eq. (10); 
i

jX  is the jth variable of 

the ith CB.  
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3.2 EVPS algorithm 

Another algorithm used for the optimization problem is the EVPS algorithm, which has 

replaced the VPS (Vibrating Particles System) algorithm due to the increased convergence 

speed and efficiency of the VPS algorithm [7]. The implementation process of this meta-

heuristic algorithm is as follows: 

1. First, the initial population in the permissible range is generated by Eq. (11). 

2. In this algorithm, another parameter called memory parameter is defined which stores the 

number of memory sizes from the best obtained positions for the population. 

3. The parameter defined according to Eq. (12) determines the effect of the damping level in 

the vibration. 

4. Eventually, the new positions of population are updated by Eq. (13). 

 

(11) 
min max min.( )i

j random  X X X X  
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 

 

(13) 

  

  

  

1 2 3

. . 1 , 1 ( )

. . 2 , 1 ( )

. . 3 , 1 ( )

1

j j j

i

j j j j

i i

j j j

i

D A rand OHB A OHB a

D A rand GP A GP b

D A rand BP A BP c

  

      

      

      

  

X

X X

X

 

 

where, 
i

jX  is the jth variable of the ith particle; Xmax and Xmin are the upper and lower bounds 

of design variables in the search space, respectively; iter is the current number of iterations; 

itermax is the total number of iterations and α is a parameter with a constant value; ±1 used 

randomly; OHB, GP and BP are determined independently for each of the variables; The 

coefficients ω1, ω2 and ω3 are the relative importance for OHB, GP and BP, respectively; 

rand1, rand2 and rand3 are random numbers uniformly distributed in the [0, 1] range. 

 

 

4. NUMERICAL EXAMPLES 
 

In this section, two numerical examples are considered for reliability based design 

optimization problem of dome truss structures using ECBO and EVPS algorithms. The 

optimization process of both examples is performed in some independent runs. In this study 

for each of these optimization algorithms a population of 30 and a maximum number of 

iterations of 300 are selected. To perform the reliability analysis by Monte-Carlo simulation, 

the number of Monte-Carlo samples is assumed to be 104. The cross-sectional area of 

elements, modulus of elasticity, material density and the added masses are considered to be 

the random parameters which have a uniform distribution with a coefficient of variation of 

5%. The modulus of elasticity is assumed 2.1×1011 (N/m2). 
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4.1 A 52-bar dome-like truss 

In this example size and shape optimization (simultaneously) of the 52-bar dome truss 

structure is considered which the initial schematic of this truss is shown in Fig. 1. All truss 

elements are arranged into eight groups as reported in Table 1. The Material density (ρ) and 

added mass are assumed 7800 (kg/m3) and 50 (kg), respectively. The value of design 

variable range, frequency constraints and Allowed value of all free nodes are given in Table 

2. The geometry of the structure changes that its symmetry is established. This example was 

previously studied [22-24]. Table 3. shows the optimization results obtained for the 52-bar 

dome-like truss. 
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Figure 1. Schematic of the 52-bar dome-like truss 
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Table 1: Element grouping adopted in the 52-bar dome-like truss problem 

Elements Group number  Elements Group number 

21-28 5  1-4 1 
29-36 6  5-8 2 
37-44 7  9-16 3 
45-52 8  17-20 4 

 

Table 2: Data for the 52-bar dome truss structure 

Parameters (unit) Value 

Constraints on first two frequencies (Hz) ω1 ≤ 15.961 , ω2≤ 28.648 

Allowable range of cross sections (m2) 0.0001 ≤ A ≤ 0.001 

Allowed value of all free nodes (m) ±2  

 

Table 3: Optimization results obtained for the 52-bar dome-like truss 

Design variables RBDO DDO 

ECBO EVPS CSS [25] DPSO [26] 

ZA (m) 4.1712 4.0828 5.2716 6.164 

XB (m) 3.2656 3.0906 1.5909 2.261 

ZB (m) 3.7000 3.7392 3.7093 3.832 

XF (m) 4.3743 4.3951 3.5595 4.046 

ZF (m) 2.5072 2.5633 2.5757 2.509 

A1 (cm2) 1.0108 1.1157 1.0464 1.002 

A2 (cm2) 1.0002 1.0291 1.7295 1.117 

A3 (cm2) 1.7272 2.0154 1.6507 1.221 

A4 (cm2) 2.4524 2.0387 1.5059 1.464 

A5 (cm2) 1.3864 1.6380 1.721 1.513 

A6 (cm2) 1.3557 1.1728 1.002 1.001 

A7 (cm2) 2.6430 2.1287 1.7415 1.526 

A8 (cm2) 1.7488 2.0398 1.2555 1.384 

Best weight (kg) 275.946 271.564 205.237 195.624 

Mean weight (kg) 341.262 294.791 213.101 - 

Worst weight (kg) 470.116 335.751 - - 

Standard deviation (kg) 69.378 18.005 7.391 - 

Natural frequencies (Hz) 
1

2

f

f





 
14.033 11.386 9.246 11.236 

31.710 31.742 28.648 28.648 

Reliability index β 

(Probability of 

safety %) 

 

 

1

2

f

f







  

3.239 (99.94%) Inf (100%) Inf (100%) Inf (100%) 

3.036 (99.88%) 3.011(99.87) 0.012 (50.46%) 0.0 (44.79%) 
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The convergence curves of each algorithm for the best and average solution of the 52-bar 

dome-like truss are shown in Fig. 2. and Fig. 3, respectively. Figures indicate the 

comparison of the convergence rate of these algorithms. The results show the appropriate 

performance of the proposed algorithms. 

 

 
Figure 2. Comparison of the convergence curves for the best run obtained by the algorithms for 

the 52-bar dome-like truss 

 

 
Figure 3. Comparison of the convergence curves for the average of runs obtained by the 

algorithms for the 52-bar dome-like truss 

 

4.2 A 120-bar dome-like truss 

In this example, a 120-bar dome truss structure is considered as shown in Fig. 4. This 

problem has already been evaluated in some researches as optimization problem with 

frequency constraints [25-29]. Non-structural masses are attached to all free nodes as 

follows: 3000 kg at node 1, 500 kg at nodes 2 through 13 and 100 kg in the remaining nodes 

and the material density (ρ) is assumed 7971.81 (kg/m3) for this example. The variable range 

and frequency constraints are summarized in Table 4. The selected grouping of elements is 

shown in Fig. 4.  

Table 5. shows the optimization results obtained for the 120-bar dome truss structure. 
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Figure 4. Schematic of the 120-bar dome truss 

 
Table 4: Data for the 120-bar dome truss structure 

Property (unit) Value 

Constraints on first two 
frequencies (Hz) 

ω1 ≤ 9 , ω2≤ 11 

Allowable range of 

cross sections (m2) 
0.0001 ≤ A ≤ 0.01293 
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Table 5: Optimization results obtained for the 120-bar dome truss 

Design variables RBDO DDO 

ECBO EVPS CSS [26] DPSO [26] 
A1 (cm2) 25.870 23.531 19.454 19.571 

A2 (cm2) 54.625 51.465 44.174 41.148 

A3 (cm2) 10.294 21.335 10.860 11.439 

A4 (cm2) 36.945 31.510 21.003 21.315 

A5 (cm2) 20.848 16.160 9.060 10.094 

A6 (cm2) 12.736 17.176 13.144 12.514 

A7 (cm2) 18.954 19.729 15.447 15.080 

Best weight (kg) 12692.36 12414.45 8922.85 8886.92 

Mean weight (kg) 13035.42 12874.92 - - 

Worst weight (kg) 13351.26 13001.02 - - 

Standard deviation (kg) 315.711 269.263 - - 

Natural frequencies (Hz) 1

2

f

f





 
10.113 10.062 9.001 9.000 

12.124 12.161 11.001 11.000 

Reliability index β 

(Probability of 

safety %) 

 

 

1

2

f

f









 
3.156 (99.92%) 3.291 (99.95%) 0.190 (57.52%) 0.186 (57.36%) 

3.090 (99.90%) 3.011 (99.87%) 0.0 (47.74%) 0.0 (47.85%) 

 

 
Figure 5. Comparison of the convergence curves for the best run obtained by the algorithms for 

the 120-bar dome truss 

 

The convergence curves of each algorithm for the best and average solution of the 120-

bar dome-like truss are shown in Fig. 5. and Fig. 6, respectively. Figures indicate the 

comparison of the convergence rate of these algorithms. The results show the appropriate 

performance of the proposed algorithms. 
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Figure 6. Comparison of the convergence curves for the average of runs obtained by the 

algorithms for the 120-bar dome truss 

 

 

5. CONCLUSIONS 
 

There are always many uncertainties in the design and execution of structures, so it is 

important to consider this effect. Reliability-based design optimization considers the effect of 

the mentioned effect and leads to the design of the structure with the desired reliability. These 

uncertainties are effective in various cases such as material, external loads, structural 

properties and etc. In this study, the RBDO of two dome structures with frequency limitation 

is considered. The EVPS and ECBO algorithms are used to optimize the problems. The results 

show that the EVPS algorithm is slightly more successful in finding the best optimal answer in 

compare with the ECBO algorithm. The Monte-Carlo simulation method is used to evaluate 

the reliability of each response of metaheuristic algorithm in the optimization process. 
Table 3 and Table 5 show the results of the RBDO design and optimal design of some 

other researchers (without considering the reliability based design). According to the results, 

the weight of the structure, regardless of reliability, is lower and, of course, the reliability 

index is lower. 
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