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ABSTRACT 
 

In this research, the optimization problem of the steel-concrete composite I-girder bridges is 

investigated. The optimization process is performed using the pattern search algorithm, and 

a parallel processing-based approach is introduced to improve the performance of this 

algorithm. In addition, using the open application programming interface (OAPI), the SM 

toolbox is developed. In this toolbox, the OAPI commands are implemented as MATLAB 

functions. The design variables represent the number and dimension of the longitudinal 

beam and the thickness of the concrete slab. The constraints of this problem are presented in 

three steps. The first step includes the constraints on the web-plate and flange-plate 

proportion limits and those on the operating conditions. The second step consists of 

considering strength constraints, while the concrete slab is not yet hardened. In the third 

step, strength and deflection constraints are considered when the concrete slab is hardened. 

The AASHTO LRFD code (2007) for steel beam design and AASHTO LRFD (2014) for 

concrete slab design are used. The numerical examples of a sloping bridge with a skew angle 

are presented. Results show that active constraints are those on the operating conditions and 

component strength and that in terms of CPU time, a 19.6% improvement is achieved using 

parallel processing. 
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1. INTRODUCTION 
 

Undoubtedly, one of the most fundamental infrastructures of the economic development of 

any country is its transport network. Thus, the development of this network is a necessity for 

economic growth in each country. Bridges are considered as one of the vital components of 

transportation networks. Hence, it is essential to provide useful tools and methodologies for 

the optimal design of bridges [1, 2]. 

Optimization can be defined as the act of obtaining the best result under given 

constraints. Optimal designs result in saving material and energy resources. Developments 

in computer hardware and software and advances in numerical optimization methods make it 

possible to formulate the design of complicated discrete engineering problems as an 

optimization problem and solve them by one of the optimization methods [3]. In the recent 

decades, many researchers have investigated the optimal design of bridges. 

Simões and Negrão applied a multi-objective optimization algorithm for cable bridges 

using maximum and minimum stress and deflection under dead load as constraints [4]. Guan 

et al. attempted to optimize the topology of bridges by considering stress, deflection, and 

frequency constraints [5]. Srinivas and Ramanjaneyulu studied two-lane bridges and three 

longitudinal girders and used a combination of genetic algorithms and artificial neural 

networks to achieve optimum cross-section [6]. Cheng attempted to optimize an arch bridge 

with a steel truss using a hybrid genetic algorithm, considering the weight as an objective 

function [7]. The optimization of cable bridges was proposed by Baldomir et al. [8] and the 

objective function was the volume of consumed steel. Wei et al. optimized an arch bridge 

with a 420-meter span [9]. The cross-section of the bridge was considered to be a box with a 

concrete flange and steel web. Lute et al. presented a genetic algorithm for cable bridge 

optimization [10]. They considered the cost of materials as a cost function. Also, single-cell 

box cross-sections were used. Makiabadi et al. presented the optimal design of a single-span 

steel bridge using the teaching-learning-based optimization algorithm [11]. 

In the past decade, many researchers have applied various multi-criteria optimization in 

the field of bridge design [12], considering other factors, besides the cost, like the security of 

the infrastructure and the CO2 emissions [13], the embodied energy [14], or the lifetime 

reliability [15]. In the field of optimization of concrete-steel composite structures, various 

studies have been conducted by researchers [16–20].  
Kaveh and his students firstly used open application programming interface (OAPI) in 

combination with parallel processing in 2012 and 2014. Kaveh et al. optimized the self-

weight of steel structures using the SAP2000 and MATLAB software links, as well as the 

parallel processing toolbox in MATLAB. For this purpose, they used the Cuckoo Search 

(CS) algorithm. CS is a population-based algorithm based on the behavior of Cuckoo 

species in combination with Lévy flight. In this study, the variables were considered as the 

number of wide-flange-shape (W-shape) sections. Constraints such as member strength, 

geometric limitation, and frame displacement, were considered. The results showed the 

efficiency of this method in designing practical structures [21]. 

Kaveh et al. optimized the self-weight of a multi-span composite box girder bridge using 

the Cuckoo Search (CS) algorithm. The considered variables WERE the dimensions of steel 

beams and concrete slabs in different parts of the bridge. The constraints were strength, 

service, and geometric limits. To increase the efficiency of the proposed method, they used 
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the parallel processing toolbox in MATLAB software. Furthermore, the performance of PSO 

[22] and HS [23] algorithms were compared, and the efficiency of the proposed method was 

demonstrated [24]. Briefly, the results showed the effectiveness of this method in saving 

material consumption in practical bridges. 

Kaveh et al. [21, 24] optimized double-layer barrel vaults using the improved magnetic 

charged system search (IMCSS) algorithm and the open application programming interface 

(OAPI) [25]. In the IMCSS algorithm, the magnetic charged system search (MCSS) and an 

improved scheme of harmony search (IHS) algorithm were upgraded for better results and 

convergence. The OAPI was utilized for the structural analysis process to link the analysis 

software with the IMCSS algorithm through the programming language. The results 

demonstrated the efficiency of OAPI as a powerful interface tool for analysis of large-scale 

structures, such as double-layer barrel vaults, and the robustness of IMCSS as an 

optimization algorithm in achieving the optimal results [26]. 

Kaveh et al. optimized the problem of simultaneous shape and size optimization of 

single-layer barrel vault frames, which contains both discrete and continuous variables 

problem, using IMCSS and OAPI. They proved the efficiency of the proposed method by 

comparing it with some of the existing structures [27]. 

Cai et al. investigated the use of polymeric reinforced carbon fiber materials in a genetic 

algorithm-based optimization process to improve the aerodynamic performance of cable 

systems [28]. They considered static and dynamic behavior and vibration performance of the 

bridge. Cable force on a cable bridge was optimized by Martins et al. using of a gradient-

based optimization approach [29]. 

Their study included the time-dependent features of concrete, construction sequence, and 

nonlinear geometry. They used Euler-Bernoulli beams in finite element modeling. Gocál and 

Ďuršová conducted a parametric study to optimize the beams' placement on a steel-concrete 

composite bridge [30]. They modeled 32 potential structures with the SCIA software and 

examined the amount of consumed steel. Pedro et al. presented a two-step optimization 

method for optimizing I-girder steel-concrete composite bridges [31]. In the first step, using 

a model prepared by the bridge designer, a starting design is obtained to start the second 

step. In the second step, the optimization process is completed using this point and the three-

dimensional finite element model. To reduce the CPU time, in the first step, they used a 

simplified two-dimensional model. While this idea may be useful in the reduction the CPU 

time, due to its simplification, the proposed methodology does not consider many of the 

model's specifications, which may not ultimately guide the design to the optimal point. Also, 

in the second phase where a 3D finite element model is used, they do not take into account 

some of the effective parameters, such as skew angle, longitudinal slope, elastomers effect, 

and change in steel cross-section dimensions. 

Kaveh and Zarandi optimized steel-concrete composite bridges using CBO, ECBO, and 

VPS algorithms. In this study, they used a two-dimensional model for bridge analysis. They 

also used a simplified by-law method to determine the live load distribution coefficient due 

to using the simplified 2D beam model instead of the 3D model [2]. 

In this research, the optimization problem of the steel-concrete composite bridge is 

investigated. The pattern search algorithm is used for this purpose. In order to improve the 

performance of this algorithm, a method with parallel processing principles is proposed to 

speed up the convergence of the algorithm and to increase the probability of reaching the 
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optimal point. Using parallel processing makes it possible to use supercomputers to solve 

these problems. As the computing power of the supercomputers increases, the accuracy and 

speed of problem-solving also increase since this method's performance depends on the 

computational power of the computing machine. In this method, the limitation of the 

iterative approaches is eliminated. This limitation includes the dependency of the current 

result on that of the previous step. In Section 0, using the open application programming 

interface (OAPI), the SM toolbox is developed. In this toolbox, the OAPI commands are 

implemented as MATLAB functions. The toolbox is updated for SAP2000 and CSI 

BRIDGE software from version 17 to the latest version. Using this toolbox, a three-

dimensional finite element model with all the details of the problem is formed. MATLAB 

software optimization toolbox is used to perform the optimization process, which is 

integrated with its parallel processing capabilities. The objective function is the final cost of 

the deck construction. Problem constraints include web-plate and flange-plate proportion 

limits, operating conditions, steel beam strength constraints, and bridge deflection. 

In Section 0 of this article, a description of serial processing and parallel processing is 

provided. Section 0 contains descriptions of the optimization problem and the parallelization 

process of the pattern search algorithm. The problem is described in Section 5. Finally, in 

Section 6, the conclusions of this study are presented. 

 

 

2. SM TOOLBOX 
 

Today, in various fields of engineering, including structural and earthquake engineering, 

much research is done concerning artificial intelligence and optimization. Structural analysis 

is required in the programming process in most of such studies. Researchers use different 

methods to solve this problem, one of the most effective of which is linking MATLAB 

software with powerful structural analysis software. SAP2000 software, founded in 1975 by 

CSI affiliated with Berkeley University, is one of the most powerful software. The software 

developed by CSI has been used by thousands of engineering firms in over 160 countries for 

the design of major projects, including the Taipei 101 Tower in Taiwan, One World Trade 

Center in New York, the 2008 Olympics Birds Nest Stadium in Beijing, and the cable-

stayed Centenario Bridge over the Panama Canal. CSI's software is backed by more than 

four decades of research and development, making it the trusted choice of sophisticated 

design professionals everywhere [32]. The company offers CSI OAPI to link its products to 

programming languages based on the Visual Basic programming language and provides 

only one example for other programming languages. In relation to MATLAB software, 

indirect commands are used for modeling, and string variables and vectors follow the Visual 

Basic commands, which is not easy to use for MATLAB programmers. In the SM toolbox, 

CSI OAPI commands are provided as explicit MATLAB functions, making it much easier 

for MATLAB programmers. The toolbox is also designed to support SAP2000 and CSI 

BRIDGE software from version 17 to the latest version [33]. 

In general, the problems with CSI OAPI for MATLAB programming can be summarized 

as follows: 
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2.1 Difficulty in recognizing the main structure of commands 

The main structure of the commands provided by CSI OAPI is as follows: 

 

(1) 
 1 2R NET.explicitCast C , ' 'C 

   .R FuncName Iret  
 

where 
2

C  classes are not specified for all commands, and also inputs are not defined for use 

in MATLAB. 

In the SM toolbox, all commands are used as follows, and all inputs and outputs (I, O) 

are clearly defined using variables known in MATLAB [33]. 

 

(2) 
[ ] . . ( )O SM Class Func I 

[ ] . ( )O SM Func I 
 

2.2 Difficulty in defining numerical and string vector variables 

The method provided by CSI OAPI forces the programmers to initialize a variable before 

using it. They also use commands (3) to (5) to introduce numerical, string, and boolean 

vectors. 

 

(3) 1. (' . ', )D NET createArray System Double N 

(4) 2. (' . ', )S NET createArray System String N 
(5) 3. (' . ', )B NET createArray System Boolean N 

 

A loop must be used to initialize these vectors. Also, the size of vectors 
1 2 3

( , , )N N N , in 

some cases, is not known in advance. In the SM toolbox, there is no need to introduce 

variables before using them. Cell vectors and arrays are also applied for this purpose. 

Therefore there is no need for using additional loops in the code. 

 

 

3. PARALLEL PROCESSING AND SERIAL PROCESSING 
 

The concept of parallel processing is briefly explainedsa in this section. In serial processing, 

a problem is divided into smaller parts, then each of these parts runs on the processor in 

sequence (Fig. 1.a). In this type of processing, there is only one operation per processor at a 

time. 
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(b) (a) 

Figure 1. (a) How to solve a problem in serial processing [34]. (b) How to solve a problem in 

parallel processing[34]  

 

Parallel processing means running one or more programs simultaneously on multiple 

processors. In this way, a problem is divided into several parts so that each part can be 

solved simultaneously. Each segment is then transformed into a series of parallel commands, 

running in parallel on the processors (Fig. 1.b). In general, parallel processing means using 

at least two microprocessors in the same task. For this purpose, scientists divide a particular 

problem into several components by special software, then send each component to a 

dedicated processor. Next, each processor performs its task of solving the problem. Later, 

the software assembles the results to solve the initial complex problem [34]. The advantages 

of parallel processing include saving CPU time for problem-solving, solving large and 

complex problems in a fixed time interval, and performing multiple operations 

simultaneously. Another significant benefit is the use of non-local resources, such as 

computers on a network, which can dramatically increase processing performance. 

 

 

4. PARALLEL PATTERN SEARCH ALGORITHM AND OPTIMIZATION 
 

Optimization means achieving the best results in operation while satisfying certain 

constraints [35]. Mathematically, an optimization problem can be categorized as constrained 

and unconstrained problems. In terms of the types of variables, different categories are 

problems with continuous variables, problems with discrete variables, and problems with 

combined variables. A constrained optimization problem can be defined as follows: 

 

(6) 

1 2 { , ,..., }

 { ( )}

 :

( ) 0 , 1, 2,3,...,

( ) 0 , 1, 2,3,...,

T

n

i g

k k

low up

Find x x x x

Minimize f x

Subjected to

g x i n

h x k n

x x x
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where f  is the objective function, x  is the vector of design variables, ig  is inequalities 

constraints, kh  is equality constraints, lowx  is the lower bound for the design variables, upx  

is the upper bound for the design variables, gn  is the number of inequalities, and kn  is the 

number of equality constraints.  

To solve the optimization problem (1), a variety of methods have been proposed thus far. 

Pattern Search Algorithm is an effective search method in solving several engineering 

problems with a large number of objective function evaluations [36]. The basic idea of this 

method is to create a mesh around the last obtained optimal point and advance around that 

point to achieve a better result. For achieving this, the algorithm moves to the optimal point 

by changing the mesh size. The general steps of this algorithm for an ICU1 can be 

considered as follows (Fig. 3.a): 

1. The algorithm starts with 
0

X  point. 

2. n Unit vectors are created to form the mesh. 

 

(7) 
1

2

[1,0,0,...,0]

[0,1,0,...,0]

[0,0,0,.. ]

..

. 1

.

,

t

t

t

n

M

M

M







 

 

3. Point 
0

X  is added to the grid vectors, and the value of the cost function is calculated for 

each point. In this way, meshing is formed as follows (Fig. 2). 

 

 
Figure 2. How to mesh in a pattern search algorithm with two variables 

 

4. If we have a better value than the previous one, we have a successful poll. Then, the 

algorithm considers this point to be 1
X . At this point, the mesh vectors are multiplied by 

an expansion coefficient (usually 2). 

                                                   
1Independent search unit 
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5. If there is no improvement over the current point in any meshing points, we have an 

unsuccessful poll. In this case, the mesh size is multiplied by a decreasing factor (usually 0.5). 

The stopping criteria in this algorithm are as follows (the numbers in parentheses 

correspond to the numerical example): 

- If the mesh size is less than the allowed limit 6(10 ) . 

- If the number of iterations exceeds the allowed limit (2000) . 

- If the distance between the point found in a successful poll to that found in the next 

successful poll is less than the specified limit 6(10 ) . 

In the present study, the concept of parallelization is used to improve the performance of 

the pattern search algorithm. Accordingly, the search areas are divided into several subareas, 

and the starting point of each ICU unit is selected from that area. The parallel pattern search 

algorithm is described below (Fig. 3.b): 
1. The number of parallel workers is determined ( )WN . 

2. The search intervals are divided into 
WN  subcategories. 

3. From each subcategory, a random initial point is extracted. 

4. Each starting point is sent to an ICU using a parallel processor. 

5. The best output from ICUs is considered as the best point ( )
Best

X . 

The pattern search algorithm is designed for continuous variables. In this research, 

variables are considered as discrete. For this purpose, search intervals are regarded as 

vectors of discrete values, where the location of each variable in the interval is considered as 

the intermediate design variable. During the optimization process, this intermediate variable 

is rounded to the nearest possible location in the interval and determines the optimal value. 

For example, suppose 1 2[ , ,..., ,..., ]y nS s s s s is a discrete interval for the variable S . Then, 

the location of any possible value is considered as the intermediate variable (y). 

 

  
(b) (a) 

Figure 3. (a) Flowchart of an ICU unit. (b) Flowchart of a parallel pattern search algorithm 
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5. PROBLEM DESCRIPTION 
 

This section describes the formulation of optimization problem for the I-girder composite 

steel-concrete bridges with skew angle and longitudinal slope. In the following subsections, 

definitions of parameters and variables, finite element modeling, problem-solving and 

constraint expression, objective function, and a numerical example are presented.  

 

5.1 Parameters and variables 

In this section, the parameters affecting the mathematical expression of a steel-concrete 

composite bridge problem are described. These parameters are associated with the problem 

dimensions, the material specifications and loads, and the control parameters' specifications. 

The parameters for the problem dimensions are provided in Table 1. The design variables 

associated with each parameter are shown alongside that parameter. It should be noted that 

steel beams are made of two segments and three sections. Segment 1 has a fixed cross-

section, and segment two is composed of two different sections. 

 
Table 1: Parameters related to the dimensions of the steel-concrete composite bridge problem 

The value considered in 

the numerical example Description Parameter 

25.91  (85 )m ft  Bridge span,Fig. 4.a S
L

 

0.1  Longitudinal slope, Fig. 4.a Slope  
75 deg  Skew angle, Fig. 4.d Skew  

- 
Length of the cross-section ith in the 

segment jth, Fig. 4.a 
Lij  

12.8  (42 )m ft  Width of the deck, Fig. 4.b 0W  
11.88  (39 )m ft  Road width, Fig. 4.b Wr  

203.2  (80 )cm in  
Final permissible depth of bridge cross-

section, Fig. 4.c ,maxht  

.9  (3 )m ft  Length of the balcony area, Fig. 4.b L
ov

 

3
7  (2  )

4
cm in

 
Depth of hunch, Fig. 4.b h

hu
 

- 
Number of internal longitudinal beams, 

Fig. 4.c 
( )1N xib  

- 
Depth of longitudinal beams web, Fig. 

4.e 
( )2h xw  

- 
Flange thickness of beams, section 1, 

segment 1, Fig. 4.e 
( )11 3t xw  

- 
Flange thickness of beams, section 1, 

segment 2, Fig. 4.e 
( )12 4t xw  

- 
Flange thickness of beams, section 2, 

segment 2, Fig. 4.e 
( )22 5t xw  

- 
The parameter specifying the length of 

segment 2, Equation (8) 
( )1 6x  

- The parameter specifying the length of ( )2 7x  
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section 1, segment 2, Equation (8) 
- Thickness of concrete slab, Fig. 4.b ( )8t xs  

- 
Top flange width of section 1, segment 

1, Fig. 4.e 
 11 9w xtf  

- 
Top flange width of section 1, segment2, 

Fig. 4.e 
( )

12 10
w x

tf  

- 
Top flange width of section2, segment 2, 

Fig. 4.e 
( )22 11w xtf  

- 
Bottom flange width of section 1, 

segment 1, Fig. 4.e 
( )11 12w xbf  

- 
Bottom flange width of section 1, 

segment 2, Fig. 4.e 
( )12 13w xbf  

- 
Bottom flange width of section 2, 

segment 2, Fig. 4.e 
( )22 14w xbf  

- 
Top flange thickness of section 1, 

segment 1, Fig. 4.e 
( )11 15t xtf  

- 
Top flange thickness of section 1, 

segment 2, Fig. 4.e 
( )12 16t xtf  

- 
Top flange thickness of section 2, 

segment 2, Figure 4.e 
( )22 17t xtf  

- 
Bottom flange thickness of section 1, 

segment 1, Fig. 4.e 
( )11 18t xbf  

- 
Bottom flange thickness of section 1, 

segment 2, Fig. 4.e 
( )12 19t xbf  

- 
Bottom flange thickness of section 2, 

segment 2, Fig. 4.e 
( )22 20t xbf  

193.1  (.5 )
N kip

m in  
stiffness of elastomers Ks  

25.4  (10 )cm in  
Minimum free spacing between 

longitudinal beams, Fig. 4.c 
b

fs
 

20.32  (8 )cm in  Flange width of the support beams ,wf sub  
2.54  (1 )cm in  Flange thickness of the support beams ,t f sub  

9
1.43  (  )

16
cm in

 
Web thickness of the support beams ,tw sub  

38.1  (15 )cm in  Web depth of the support beams ,hw sub  
 

  
(b) (a) 
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(d) (c) 

 
(e) 

Figure 4. Parameters of the steel-concrete composite bridge problem 
 

The parameters for the properties of the materials and the loads are presented in Table 2: 

 
Table 2: Parameters of material specifications and reinforced steel - concrete bridge problem 

The value considered in the 

numerical example Description Parameter 

2.4  (150 )
3

t
pcf

m
 The specific weight of concrete gc  

7.85  (490 )
3

t
pcf

m
 The specific weight of steel gs  

7.85  (490 )
3

t
pcf

m
 Specific weight of reinforcement bars gb  

2.87  (0.06 )
2

kip
kpa

ft
 The specific surface coating weight wws  

30.65  (0.64 )
2

kip
kpa

ft
 Weight of unit length of side barriers qbw  

344.74  (50 )mpa ksi  The yield stress of steel plates Fy  

413.69  (60 )mpa ksi  The yield stress of reinforcement bars Fyb  

199.95 G  (29000 )pa ksi  The elastic modulus of steel Es  

199.95 G  (29000 )pa ksi  The elastic modulus of reinforcement bars Eb  

24.82 (3600 )Gpa ksi    The elastic modulus of concrete Ec  

0.3  The poisson ratio of steel us  

0.3  The poisson ratio of reinforcement bars ub  
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0.2  The poisson ratio of concrete uc  

20.6  (0.64 )
N kip

m ft
 The amount of lane load wdll  

78.45 (8 )N kip    Front axle load of HL 93 truck, Figure 5.b 1P  

313.81  (32 )N kip  Middle axle load of HL 93 truck, Figure 5.b 2P  

313.81  (32 )N kip  Rear axle load of HL 93 truck, Figure 5.b 3P  

4.27  (14 )m ft  
Front axle and middle axle distance of HL 93 

truck, Figure 5.a 1d  

4.27 9.14  (14 30 )m ft   
Middle axle and rear axle distance of HL 93 

truck, Figure 5.a 2d  

1.83  (6 )m ft  
Center to center distance of HL 93 truck wheels,  

Figure 5.c 3d  

.61  (2 )m ft  
HL 93 truck wheel center distance with lane 

edge, Figure 5.c 4d  

 

(8) 
2

1

SegL

L
   

(9) 
12

2

2Seg

L

L
   

 

The specifications for the control parameters are presented in Table 3. 

 
Table 3: Specifications of control parameters of steel-concrete composite bridge  

The value considered in the 

numerical example 
Description Parameter 

.33  Impact factor for live loads IMLL  
5  Number of stop stations for truck front wheel Nsfw  
3  Number of stop stations for truck rear wheel Nsbw  

2.59  (8.5 )m ft  The distance between the side supports ,Su dis  

0  

This parameter is equal to 1 if using 

longitudinal stiffeners and otherwise equal to 

0 
HLS  

.25  
The correction factor of concrete slab inertia 

moment MIM  
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(b) (a) 

 
(c) 

Figure 5. Specifications, dimensions, and installation of HL 93 truck 
 

5.2 Finite elements model 

Subprograms are used to model finite element components. They are used to calculate 

problem constraints. These subprograms deal with modeling the main slabs, the side slabs, 

the main beams, support beams, the rigid-links, supports, and main slab bars. By running 

these subprograms, the finite element model is automatically generated according to the 

problem parameters. Fig. 6.a and Fig. 6.b, illustrate the output of numerical example 

generated by these subprograms. 

 

  
(b) (a) 

Figure 6. (a) 3D optimized bridge view in numerical example. (b) Simplified beam model 

for concrete rebar design 
 

The main slab modeling subprogram creates the upper slab of the bridge deck using the 

plate elements in three groups
1 2 3
, ,D D D ( Fig. 7.a). The side slab modeling subprogram 
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models the upper slab balcony area; it also groups the main side slabs into a separate group 

while applying the main slab grouping (Fig. 7.b). The subprogram used in modeling the 

main beams creates the main bridge deck beams; it also divides the beams into three groups 

1 2 3
, ,B B B  (Fig. 7.c). According to the model parameters, in the beam modeling, the beam 

eccentricity is applied to the concrete slab. The subprogram in support-beam modeling 

creates a bridge deck support beam; it also places the beams in a 
B

SU  group (Fig. 7.d). 

 

  
(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 7. The finite element model formed by the sub-programs for modeling: (a) the main slab. 

(b) the side slabs. (c) the main beams. (d) the support beams. (e) the bridge supports. (f) the 

rigid-link 

 

The support modeling subprogram models bridge supports automatically; it uses spring 

elements to model the effect of elastic supports on the problem. It can also model the 
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supports as hinges (Fig. 7.e). The rigid -link modeling subprogram creates rigid-link 

elements to model the eccentricity between the deck and steel beams. These elements are 

made automatically between the concrete slab points and the longitudinal beams (Fig. 7.f). 
Concrete slab reinforcement bar subprogram calculating uses a hypothetical concrete beam 

transversely placed on simple supports with several longitudinal beams, this beam also has 

an effective width and depth equal to the slab thickness (Fig. 6.b). 

In order to validate the finite element model created by these subprograms, a three-

dimensional model of a bridge with the dimensions is created (Fig. 8.a.) The A-A and B-B 

cross sections are defined at the beginning and middle of the span, respectively. Two load 

cases are also considered. 

In the first case, six centralized loads (equal to the longitudinal beams in the model) are 

applied to the center of the span (Fig. 8.b). The value of these loads is 1P k . In the second 

case, a distributed surface load is applied to all parts of the concrete slab (Fig. 8.c). The 

value of these loads is 
2

1 /q kip ft . 

 

 

 
(b) (a) 

 
(b) 

Figure 8. (a) 3D optimized bridge view in a numerical example, (b) Simplified beam model for 

concrete rebar design 
 
Fig. 9 shows the output of SAP2000 software for A-A and B-B sections. Table 4 presents 

the outputs of the SAP2000 program and the results of the static equilibrium. It can be noted 

that the program correctly analyzes the bridge structure. 
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Figure 9. SAP2000 software outputs for A-A and B-B sections 

 
Table 4: Comparison of SAP2000 software output and static equilibrium results 

Moment 

difference 

in 

percentage 

SAP2000 

Output 

Moment

( . )k in  

Bending 

moment in 

static 

equilibrium

( . )k in  

Shear 

force 

difference 

in 

percentage 

SAP2000 

output 

shear 

force ( )k  

Shear force 

in static 

equilibrium

( )k   

Load 

cases 
section 

0  0  0  0   3  3  1   A-A 

0  0  0  0  1785  1785   2   A-A 

0  1530  1530   0  3  3  1  B-B 

0  54.55 10  54.55 10   0  0  0  2  B-B 

 

5.3 Problem solving and constraints 

Three steps are considered to calculate the constraints of this problem. Before starting the 

calculations, the essential parameters are set. After adjusting the input parameters, the 

constraints related to this problem are calculated in three steps, using the AASHTO code 

[37]. In the first step, constraints related to flange and web plates proportion limits are 

considered. Calculations of these constraints do not require the finite element model of the 

structure. These constraints are divided into two groups: flange and web plates proportion 

limits. The constraints for the web plates are expressed as follows: 

 

(1) 1 0w

w

h

rt
  

 

where 300r   if longitudinal stiffeners are used, and otherwise 150r  . 

The constraints for the flange plates are expressed as follows: 

 

(2) 1 0
24

f

f

w

t
   

(3) 1 0
6

w

f

h

w
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(4) 
1.1

1 0w

f

t

t
   

(5) 1 0
10

yc

yt

I

I
   

(6) 1 0
10

yt

yc

I

I
   

 

where fw  is the width of the flange, ft  is the thickness of the flange,
wt  represents the 

thickness of the web,
wh  the depth of the web,

yc
I  represents the moment of inertia of the 

tensile flange about the vertical axis of the cross-section, and 
yt

I is the moment of inertia of 

compression flange about the vertical axis of the cross-section. 

 

(7) 
,max

1 0t

t

h

h
   

(8) 
.04

1 0
t

L

h
   

(9) 
3

.033
1 0

L

t
   

(10) 
,max

1 0
fs

b f

b

S w
 


 

(11) 1 0
tf

bf

w

w
   

 

where 
th  represents the depth of the cross-section of the bridge, 

,maxt
h  is the upper limit for the 

depth of the cross-section of the bridge, L  represents the bridge span length, 
3

t  is the depth of 

steel beam cross-section, 
fs

b  is the free spacing between longitudinal beams,
b

S  is the distance 

from center to center of longitudinal beams, ,maxfw is the upper limit for steel cross-section 

flanges,
tf

w  represents the width of top flange, and
bf

w is width of bottom flange. 

In the second step, the structural model is constructed without considering the concrete 

slab effect. This step indicates the state of the structure before concrete hardening. The 

concrete slab load is uniformly distributed over the longitudinal beams at this stage. The 

finite element model is used to determine the internal forces and the deformation. For this 

purpose, a three-dimensional model is developed using the SAP2000 software. To build this 

model, the parameters are first set in a MATLAB code; afterward, through the link to the 

SAP2000 software, a structural model is created using the defined parameters. 

The load case used in this step is 1.5DC, where DC is the dead load on the structure 
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(weight of steel beams and concrete slab). The constraints of this step are illustrated in the 

following equations: 

 

(12) 1,2 1 0BR    

(13) 2,2 1 0BR    

(14) 3,2 1 0BR    

 

where
1,2B

R is the strength ratio of the 
1

B  group, 
2,2B

R  is the strength ratio of the 
2

B  group, 

and
3,2B

R  represents the strength ratio of the 
3

B  group, all reported by the SAP2000 software 

in step 2. 

In the third step, the structural model is constructed by considering the concrete slab 

effect. This stage indicates the status of the structure after the concrete hardening. In this 

step, all loads are applied to slab shell elements. Live loads are positioned at different places 

along the bridge to obtain the most critical state for calculating constraints. The synchronous 

effect of live loads is determined by the coefficient of the number of lanes [37]. This is 

intended for bridges with a crossing line of 1.2, two crossings equal to 1, three crossing lines 

equal to 0.85, and for those with more than three crossing lines equal to 0.65. 

At this step, the load cases of 1.25DC+1.5DW+1.75(LL+IM) and 1.5DC+1.5DW are 

used, where DC is the dead load on the structure, DW is the dead loads representing surface 

weight, and LL is the live load (HL is the live load representing truck design, DLL is the 

line load), and IM is the live load impact factor of the HL-93 truck. The constraints of this 

step are illustrated in the following equations: 

 

(15) 1,3 1 0BR    

(16) 2,3 1 0BR    

(17) 3,3 1 0BR    

(18) 
800

1 0
L


   

 

where 
1,3B

R  is the strength ratio of the 
1

B  group,
2,3B

R  represents the strength ratio of the 
2

B  

group, and
3,3B

R  is the strength ratio of the 
3

B  group, all reported by SAP2000 software in step 

3, further,   is the magnitude of the displacement midpoints of the bridge span in step 3.  
The following equation is also used to determine the number of lanes: 

 

(19) #   ( )
120 

W
rDesign Lane Load INT
ft

  

 

Bridges with widths from 20 to 24 ft should be designed for two lanes where the design 

load for each of which is .5
r

W . 
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5.4 The objective function 

To perform the optimization process, the most important steps are determining the design 

variables, the objective function, and the constraints. Design variables and problem 

constraints are presented in previous Sections. The objective function is defined as the cost 

of the bridge construction and is calculated by the following equation: 

 

(24) ( ) Cos ( ) ( )f X t X P X   
 

where Cos ( )t X  is the final cost of constructing the bridge deck, and ( )P X  is the penalty for 

the constraint. 

The following equation is used to calculate Cos ( )t X : 

 

(25) 
(1 )Cos ( ) ( Cos ( )) acc

s s c c b b ft X C W C V C W p t X   
 

 

where C
s

 represents the price per unit weight of steel,
c

C  is the price per unit weight of 

concrete;
b

C is the price per unit weight of reinforcement bars; 
b

W  represents the weight of 

reinforcement bars used in the slab; 
s

W is the weight of steel used in beam construction; 
c

V  

denotes the volume of concrete used in bridge construction; acc is the parameter indicating 

an acceptable design of reinforcement bars; and fp  represents penalty coefficient. 

To determine the number of required reinforcement bars at the top and bottom of the 

concrete slab, a continuous beam model positioned on simple supports with several 

longitudinal beams is modeled in SAP2000 software by a link. Since this software calculates 

the number of the rebars required at the top and bottom of the section, the cost of rebars is 

taken into account in the objective function. In this study, if the design of the bars is 

acceptable, 1acc  , otherwise 0acc  . The variables used in the above equations can be 

calculated as the following: 

 

(20) 
s ib beamW N W  

(21) 
11 11 11 11 11 11

12 12 12 12 12 12

22 22 22 22 22 22

{ ( ) ...

            ( ) ...

            ( )}

beam s tf tf w w bf bf

tf tf w w bf bf

tf tf w w bf bf

W g L w t h t w t

L w t h t w t

L w t h t w t

   

  

   
(22) 

0c sV W Lt  
(23) 

2

,

( )( )b t b b

s eq

L
W A A g

b
 

 
 

where 
11L is the length of cross-section 1 in segment 1; 

12L is the length of cross-section 1 in 

segment 2; 
22L  denotes the length of cross-section 2 in segment 2; L  is the bridge span; 

tA  

is the maximum number of reinforcement bars required for the concrete slab at the top of 
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cross-section;
bA  is the maximum number of reinforcement bars required for the concrete 

slab at the bottom of the cross-section; and ,s eqb  is the effective width of the assumed 

concrete beam. 

For the design of the reinforcement bars of the slab, the following equation is used [37]: 

 

(30) , min{26 6.6 ,48 3 }s eq b bb S S    

 

where 
bS is the free distance between longitudinal beams in feet. The following equation is 

used to calculate ( )P X : 

 

(31) 
1

( ) Cos ( ) max(0, ( ))
gn

f i

i

P X p t X g X


   

 

Where ( )ig X are constraints of the problem, and gn is the number of constraints. 

 

5.5 Numerical example 

In this section, a numerical example of the bridge is presented. In solving this problem, the 

following parameters: 1.56$ /  (.7 $/lb)C kg
s
 , 1.56 $ / (.7 $/lb)

b
C kg , 

3 3
107.14 $ / (3 $ / )

c
C m ft ,

6
10

f
p  are considered. The discrete search ranges are provided 

in Table 5. The fixed parameters for this example are listed in Section 0. 

 
Table 5: Search bands for discrete variables 

ub  s  lb  Parameters 

6  1  2  1S  
254  (100 )cm in  .635 (.25 )cm in    30.48  (12 )cm in  2S  

6.35  (2.5 )cm in  
1

.1587  (  )
16

cm in  1
.1587  (  )

16
cm in  3S  

.8  .05   .2  4S  
30.48  (12 )cm in  1.27  (.5 )cm in  20.23  (8 )cm in  5S  
60.96  (24 )cm in  .635  (.25 )cm in  25.4  (10 )cm in  6S  

6.35  (2.5 )cm in  
1

.1587  (  )
16

cm in  1
.1587  (  )

16
cm in  7S  

 

In Table 5,
1

S is the search range for the number of internal steel beams related to the 

variable
1x ;

2
S is the search range for the depth of steel cross-sections related to variable

2x ;

3
S  represents the search range for the web thicknesses of steel cross-sections related to the 
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variables 
3 4 5, ,x x x ;

4
S is the search range for parameters

1  and 
2  related to variables 

6 7,x x ;
5

S is the search range for concrete slab thickness related to variable 
8x ,

6
S is the 

search range for flange width related to the variables 
9 10 11 12 13 14, , , , ,x x x x x x , 

7
S is the search 

range for flange thickness related to the variables 
15 16 17 18 19 20, , , , ,x x x x x x ; 

bl  represents the 

lower bound of the search range; 
s is the amount of each variable change in the search 

range, and 
bu  denotes the upper bound of the search range.  

Fig. 10 shows the CPU time of parallel and serial processing in 10 simulation times. On 

average, parallel processing reduces the CPU time by 19.6% compared to serial processing. 

 

 
Figure 10. Comparison of time consumed in the serial approach versus parallel approach 

 

This comparison is made by Intel® Core (TM) i5-6200U CPU@2.3GHz, a processor 

with two physical and four logic cores. Four parallel workers are used. According to Table 

6, the best results are obtained on the parallel worker No. 1. 

 
Table 6: Runs results on a parallel processor 

Number of cost function evaluations Iteration Cost function value 710 $  CPU No 

2524  171  1.3221  1  
1812  105  1.4793  2  
2132  145  1.5273  3  

2612  196  1.3743  4  

 

The optimal variables are presented in Table 7. According to the results, the second 

segment holds about 30% of the steel volume consumed, distributed almost equally between 

the two sections. The convergence curve of the objective function is shown in Fig. 11. The 

main constraints on the optimal design are displayed in Fig. 12 to Fig. 14. 
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Table 7: Optimal variables for bridge problem 

Value 
Design 

variable Value Design 

variable 
Value Design 

variable Value Design 

variable 

5.24  

(2.0625 )

cm

in
 ( )12 16t xtf  

46.99  

(18.5 )

cm

in
 ( )22 11w xtf  .2  ( )1 6x  2  ( )1N xib  

4.76  

(1.875 )

cm

in
 ( )22 17t xtf  

59.06  

(23.25 )

cm

in
 ( )11 12w xbf  .8  ( )2 7x  

75.57 

 (29.75 )

cm

in
 ( )2h xw  

4.13  

(1.625 )

cm

in
 ( )11 18t xbf  

45.72  

(18 )

cm

in
 ( )12 13w xbf  

21.59 

 (8.5 )

cm

in
 ( )8t xs  

.79 

 (.3125 )

cm

in
 ( )11 3t xw  

5.24 

 (2.0625 )

cm

in

 

( )12 19t xbf  
46.69  

(18.5 )

cm

in
 

( )22 14w xbf

 

37.47  

(14.75 )

cm

in
  11 9w xtf  

.64  

(0.25 )

cm

in
 ( )12 4t xw  

5.56  

(2.1875 )

cm

in
 

( )22 20t xbf

 

5.56 

 (2.1875 )

cm

in
 ( )11 15t xtf  

45.72  

(18 )

cm

in
 

( )12 10w xtf

 

.64  

(.25 )

cm

in
 ( )22 5t xw  

 

Required reinforcement bars are calculated by the SAP2000 at the top of the concrete 

slab 
2 218.61 (2.885 )tA cm in  and the bottom of the concrete slab 

2 216.557 (2.566 )bA cm in , for effective width , 213.36 (84 )s eqb cm in . The starting 

point of the calculation corresponding to the best results are presented in Table 8. 

 
Table 8: The starting point of the calculation 

Value 
Design 

variable Value Design 

variable 
Value Design 

variable Value Design 

variable 

.16  

(.0625 )

cm

in
 ( )12 16t xtf  

41.91 

 (16.5 )

cm

in
 ( )22 11w xtf  .25  ( )1 6x  3  ( )

1
N x

ib
 

2.22 

 (.875 )

cm

in
 ( )22 17t xtf  

28.58  

(11.25 )

cm

in
 ( )11 12w xbf  .4  ( )2 7x  

53.34 

 (21 )

cm

in
 ( )2h xw  

1.59 

 (.625 )

cm

in
 ( )11 18t xbf  

34.93  

(13.75 )

cm

in
 ( )12 13w xbf  

24.13  

(9.5 )

cm

in
 ( )8t xs  

.19  

(.75 )

cm

in
 ( )11 3t xw  

.16  

(.0625 )

cm

in
 ( )12 19t xbf  

42.55 

 (16.75 )

cm

in
 ( )22 14w xbf  

38.1  

(15 )

cm

in
  11 9w xtf  

.16  

(.0625 )

cm

in
 ( )12 4t xw  

3.02 

 (1.1875 )

cm

in
 ( )22 20t xbf  

1.11  

(.4375 )

cm

in
 ( )11 15t xtf  

36.83  

(14.5 )

cm

in
 ( )12 10w xtf  

2.86  

(1.125 )

cm

in
 ( )22 5t xw  
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Figure 11. Convergence curve Figure 12. Operational constraints 

  
Figure 13. Strength constraints, second step, 

group B3 

Figure 14. Strength constraints, third step, 

group B3 

 

 

6. CONCLUSION 
 

In this research, the optimization of the steel-concrete composite bridge is investigated. The 

parallel pattern search algorithm is used to perform the optimization process. Since the 

proposed algorithm starts to search at different places, it achieves better results in less time 

than serial processing. The results demonstrate that there is an average time improvement of 

19.6% for the processor Intel® Core (TM) i5-6200U CPU@2.3GHz, with 4 parallel workers 

compared to serial processing. To perform the bridge deck analysis and design process, the 

link between MATLAB and SAP2000 is utilized using the SM toolbox. 

The numerical example is a bridge with a longitudinal slope and skew angle. In this 

example, the active constraints are those of operating and component strength. According to 

the results, the second segment holds about 30% of the steel volume consumed, distributed 

almost equally between the two cross-sections. Due to the generality of the method 

presented in this study, the methodology presented in the article can be effectively used to 

optimize other types of structures. 
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