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ABSTRACT 
 

NURBS-based isogeometric analysis (IGA) has currently been applied as a new numerical 
method in a considerable range of engineering problems. Due to non-interpolatory 
characteristic of NURBS basis functions, the properties of Kronecker Delta are not satisfied in 
IGA, and as a consequence, the imposition of essential boundary condition needs special 
treatment. The main contribution of this study is to use the well-known Lagrange multiplier 
method to impose essential boundary conditions for improving the accuracy of the 
isogeometric solution. Unlike the direct and transformation methods which are based on 
separation of control points, this method is capable of modeling incomplete Dirichlet 
boundaries. The solution accuracy and convergence rates of proposed method are compared 
with direct and transformation methods through various numerical examples. 
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1. INTRODUCTION 
 

Isogeometric analysis (IGA) is introduced as a powerful numerical method by Hughes et al. [1]. 
This method is similar with finite element method (FEM) but takes some inspiration from 
Computer Aided Design (CAD) tools. IGA is currently of great interest in various engineering 
problems (e.g. [2-12]). This method is based on Non-Uniform Rational B-splines (NURBS) which 
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are used in accurate geometrical modeling and approximation of solution space. Simple and 
systematic refinement strategies, exact representation of common engineering shapes, robustness 
and superior accuracy can be achieved in IGA in comparison with the conventional FEM.  

In spite of these advantages, the IGA method suffers from some deficiencies. One of the 
most significant drawbacks arises from imposition of essential boundary conditions. Due to 
the non-interpolating nature of NURBS basis functions, the properties of Kronecker Delta are 
not satisfied, and as a consequence, the imposition of essential boundary conditions needs 
special treatment. In considering this, several methods have been proposed for imposing 
essential boundary conditions in IGA. This issue for NURBS-based isogeometric analysis was 
first discussed by Hughes et al. [1]. In their work the essential boundary conditions were 
imposed to the control variables by evaluating the function of boundary condition at the spatial 
locations of the control points. In present study this approach is referred as Direct Method 
(DM) as mentioned by Wang and Xuan [13]. This method is efficient for homogenous 
boundary conditions but it is not reliable in non-homogenous boundary conditions. In addition, 
when the position of boundary control points is not located on the desired boundary, it even is 
not reasonable to enforce the given boundary values to the corresponding boundary control 
variables [13]. Therefore, the enhancement of essential boundary conditions in IGA needs to 
be researched more thoroughly [1]. Wang and Xuan [13] have proposed an improved method 
for imposition of essential boundary conditions in IGA. Here this method is referred as TM 
(Transformation Method) which is based on concepts of the mixed transformation method that 
was originated by Chen and Wang [14]. This method produces more accurate results and 
convergence rates in comparison with DM [13]. However it should be considered that 
selected boundary points can result in singular transformation matrix. This drawback is more 
significant when there are many active control points on desired boundary and more careful 
selection procedure is needed. As mentioned by Wang and Xuan [13], a set of boundary 
interpolation points can be selected to construct the appropriate transformation matrix.  

TM and DM are based on separation of control points into boundary and interior ones. This 
separation can complicate the imposition of essential boundary conditions in problems with 
incomplete Dirichlet boundaries. Without loss of generality consider following beam which is 
modeled by { }0 0 0 1 1 1ξ =  and { }0 0 0 1 1 1η = knot vectors. As shown 
in Figure 1 the Dirichlet boundary is defined on left side of beam with a length of LD. 
Corresponding NURBS basis functions to control points 1, 2 and 3 are boundary functions as 
they are active on DΓ , therefore in DM and TM control variable values corresponding to these 
control points will be equal to zero. Even more, for interior control points (4-9) the 
corresponding NURBS basis functions are inactive on DΓ , so the whole length of left side of 
the beam, L, is considered constrained. As a result, DM and TM are not efficient methods for 
modeling these types of Dirichlet boundaries. 

In this paper, Lagrange multiplier (LM) method is proposed for improving the imposition 
of essential boundary conditions in IGA. In mathematics, this method is used for transforming 
a constrained optimization problem to an unconstrained problem. This method has been 
widely used in various approaches because of its straightforward implementation (e.g. in 
traditional FEM [15-18], extended FEM [19-20], meshfree methods [21-24]). Unlike DM and 
TM, this method is not based on separation of control points and is capable of modeling 
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incomplete Dirichlet boundaries (e.g. Figure 1).   
 

 
Figure 1. Incompelete Dirichlet boundary on a beam 

 
This paper is organized as follows. First, the NURBS-based IGA is briefly reviewed. 

Then, formulation of enhanced IGA with proposed method is presented. Finally, results of the 
numerical simulations of several problems are discussed and the efficiency of the proposed 
approach is confirmed by comparing with available reference results. 

 
  

2. ISOGEOMETRIC ANALYSIS BASED ON THE NURBS BASIS FUNCTIONS 
 

2.1. Overview of the isogeometric analysis 

The traditional finite element formulations are based on interpolation schemes with Lagrange, 
Legendre or Hermit polynomials to approximate the geometry, the physical field and its 
derivatives. This approach often requires a substantial simplification of the geometry, 
particularly in the case of curved boundaries of the analysis domain. Generally, adaptive 
refinement of the discretized domain is applied to better approximate the boundary and to 
achieve sufficient convergence.  

The concept of IGA introduced by Hughes et.al [1] is based on applying the NURBS basis 
functions in accurate modeling of geometry and approximation of solution space.  

The NURBS basis functions are weighted functions which originate from B-spline 
interpolation. The B-spline functions are defined on a knot vector. A knot vector is a suite of 
non-descending real numbers, which is presented by, 

 

 { }1 2 1ξ ξ ξ ξ + += , , ..., n p  
(1) 

 
where ξi  is the ith knot value, n and p are respectively the number and the order of basis 
functions defined on knot vector. The half open interval, 1ξ ξ +[ , )i i , is called knot interval. If   

1ξ ξ +=i i  then the length of knot interval is equal to zero. If 1ξ  and 1ξ + +n p  are repeated p+1 
times in a knot vector, the resulting knot vector is called open knot vector. The first order B-
spline is defined on knot vector by, 

 
1

,0

1
( )

0
i i

i

if
N

otherwise
ξ ξ ξ

ξ +≤ <
= 


 (2) 
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And higher order basis functions are recursively defined by, 
 

 

1
, , 1 1, 1

1 1

( ) ( ) ( )

1, 2....,
1, 2, ....., 1

i ji
i j i j i j

i j i i j i

N N N

j p
i n p j

ξ ξξ ξ
ξ ξ ξ

ξ ξ ξ ξ
+ +

− + −
+ + + +

−−
= +

− −

=
= + + −  

(3) 

 
In which ,i jN is the ith basis function with a j order. The first order derivative of B-spline 

is, 

 
, , 1 1, 1

1 1

( ) ( ) ( )i j i j i j
i j i i j i

d j jN N N
d

ξ ξ ξ
ξ ξ ξ ξ ξ− + −

+ + + +

= −
− −  

(4) 

 
The third order B-spline functions which are obtained by knot vector of  
{ }0 0 0 0 5 0 5 1 1 1ξ = . .  are shown in Figure 2.  

 

 
Figure 2. Quadratic B-splines functions 

 
The NURBS basis functions are made from B-spline functions by following equation, 
 

 

,
, ( )

( )
i p i

i p

N w
R

W
ξ

ξ
=

 
(5) 

 
In which iw  is the weight corresponding to ith control point and ( )W ξ  is weight function, 
 

 
,

1

( )
n

i p i
i

W N wξ
=

= ∑
 

(6) 

The bivariate NURBS functions on ξ η−  knot surface are defined by: 
 

 

, , ,,
,

( ) ( )
( , )

( , )
i p j q i jp q

i j

N M w
R

W
ξ η

ξ η
ξ η

=
 

(7) 
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1,2....,
1, 2...,

i n
j m
=
=  

 
In which  ,j qM  and , ( )i pN ξ  are respectively the ith p-order and jth q-order functions on 

ξ and η  knot vectors. ,i jw  is the weight corresponding to ij control point and  ( , )W ξ η   is 
the bivariate weight function which is given by, 

 

 
, , ,

1 1
( , ) ( ) ( )

n m

i p j q i j
i j

W N M wξ η ξ η
= =

= ∑∑
 

(8) 

 
2.2. Two-dimensional stress analysis 

Isogeometric analysis of stress field with NURBS discretizations is a well studied topic, with 
applications in applied mechanics. The model problem which we consider here is the 
differential equation of stress field for isotropic material with elastic behavior, 

 

  

. 0bf inσ∇ + = Ω  (9a) 
 
 . t Nn f onσ = Γ  (9b) 
 
 . 0 Fn onσ = Γ  (9c) 
 

 Du u on= Γ  (9d)

 
 

where σ  is stress tensor, bf and tf   are body and surface force vectors respectively, n  is 

normal vector on boundary, and u is known displacement on DΓ boundary. The boundary is 
divided into three parts, DΓ (Dirichlet boundary), NΓ (Neumann boundary), and FΓ  (free 
boundary). The following equations should be satisfied, 

 

  D N F δΓ Γ Γ = ΩU U  (10a) 
 
 D N FΓ Γ Γ = ∅I I  (10b) 

 
Dirichlet and Neumann boundaries are shown in Figure 3. 
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Figure 3. Neumann and Dirichlet boundaries 

 
It can be shown that the corresponding functional of stress field is the potential energy of 

system,  

 
1
2 N

T T T
b td u f d u f dπ ε σ

Ω Ω Γ
= Ω − Ω − Γ∫ ∫ ∫  (11) 

 
The first term in Eq. (11) is the conserved strain energy in the system; the second and third 

terms are work of body and surface forces respectively.  
 

2.3. General class of problems 

The development of isogeometric analysis was applied to a very general class of problems, 
and various models have been considered in literature [25]. In this subsection, the formulation 
of scalar potential problem is considered. Let us denote the domain solution by Ω  with 
boundary Γ , the potential equation within the domain Ω  is defined as, 

 

 

0
. N

D

u s in
n u t on
u g on

∆ + = Ω
 ∇ = Γ
 = Γ  

(12) 

 
where ∆  denotes the Laplacian operator and s is the source term, t and g denote the Neumann 
and Dirichlet boundaries conditions respectively. The functional corresponding to Eq. (12) is 
given by,  

 
1( ) .
2 N

u u u d u s d ut dπ
Ω Ω Γ

= ∇ ∇ Ω − Ω − Γ∫ ∫ ∫  (13) 

 
where ∇denotes the gradient operator. 

 
2.4. Isogeometric formulation based on the NURBS basis functions 

Here, the application of NURBS-based isogeometric analysis is considered to formulate 2D 
stress analysis problem and can be generalized to other problems. In isogeometric approach, 
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the discretization is based on NURBS. Hence, the geometry and solution field are 
approximated as,  

 ( , ) , patchx RPξ η ξ η= ∈Ω  (14) 
 

 ( , ) ,h
patchu Rdξ η ξ η= ∈Ω  (15) 

 
where { }1 1 1 1( , ) , , ,+ + + +   Ω = ∈ ∈   ξ η ξ ξ ξ η η ηpatch n p m q . The matrix-form of ,i jR and ,i jP can 

be changed into vector-form by mapping from ,i j subscripts to k by, 
 
 ( 1) , with 1, 2,..., .k i j n k n m N= + − = =  (16) 

 
So, the control points are defined as: 
 

 { }1 1

T

x y Nx NyP P P P P= L L  (17) 
 
The values of solution field at the control points, also called control variables, in the present 

IGA formulation are displacements and can be arranged similar to the control points in a 
vector-form: 

 { }1 1

T

x y Nx Nyd d d d d= L L  (18) 
 

The matrix R  is obtained from NURBS basis functions, 
 

 
1 2

1 2

00 0
0 0 0

N

N

R R R
R

RR R
 

=  
 

L L

L L  (19) 

 
Next, the stiffness matrix for a single patch is computed as, 
 

 
( , ) ( , )T

patchk t B DB J dξ η ξ η
Ω

= Ω∫∫ %

%
 (20) 

 
where t  is the plate thickness, Ω%  is the parametric space and ( , )B ξ η  is the strain-
displacement matrix, given as: 

 

0

( , ) 0

x

B R
y

y x

ξ η

 ∂
 
∂ 

 ∂
=  ∂ 

 ∂ ∂
 ∂ ∂   

(21)
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Where 

 1

RR
x J
R R
y

ξ

η

−

∂ ∂ 
   ∂∂    =

∂ ∂  
   ∂ ∂   

 (22) 

 
and J is the Jacobian matrix which maps the parametric space to the physical space and is 
defined as: 

 

x y

J
x y
ξ ξ

η η

∂ ∂ 
 ∂ ∂ =

∂ ∂ 
 ∂ ∂ 

 (23) 

D is the elastic material property matrix for plane stress: 
 

 2

1 0
1 0

1
10 0

2

ED
ν

ν
ν

ν

 
 
 

=  −  −
 
 

 (24) 

 
E ,ν  are Young's modulus and Poisson's ratio, respectively.     
The force vector on a single patch in the presence of body forces bf  and traction forces 

tf is obtained as: 

 
N

T T
b b t bF R f J d R f J d

Ω Γ
= Ω+ Γ∫∫ ∫% %

% %  (25) 

 
Where Ω%  and Γ%  are the domain and traction boundary in the parametric space, bR  is the 
NURBS basis function evaluated on the traction boundary and bJ  is the Jacobian that maps 
the traction boundary into a part of physical space boundary. The control variables can then be 
solved by the following discretized equilibrium equation, 
 
 Kd F=  (26) 

 
The solution field at each point of the physical space can be approximated by Eq. (15). For 

numerical integration, the standard Gauss-quadrature is used over each element (knot span). 
The number of quadrature points depends on the NURBS order. The details of spaces, 
mapping and integration in isogeometric analysis are shown in Figure 4. Note that the physical 
mesh is only an image of knot spans on the physical space. 
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Figure 4. Physical space Ω is mapped into the parametric space 
~

Ω  using NURBS basis functions 
(Eq. 14). For numerical integration in the parametric space, each knot span (element) is mapped to 

the parent element, where the integration is performed on 
 

2.5. h-Refinement or knot insertion 

For the convergence study, h-refinement strategy has been applied to the initial geometry of 
model. In each refinement step, knots are added to the knot spans. Knot insertion is a 
procedure that arbitrary new knots are added to a knot vector without any change in the shape 
of the B-spline curve. If there are 1m n p= + +  knots in the knot vector of the B-spline curve, 
where n  is the number of control points and p  is the order of B-spline curve, by adding a 
new knot, a new control point must be added. Also, some current control points must be 
redefined. 

Consider a knot vector { }1 2 1ξ ξ ξ ξ = + += , , ..., m n p  with n control points 1 2, ,..., nP P P  and 

the order of p . Let [ ]1ξ ξ ξ +∈ˆ ,k k  be a desired new knot. The knot insertion procedure has the 
following 3 steps [26]: 

1. Find k such that ξ̂  belongs to [ ]1ξ ξ +,k k . 
2. Find 1p + control points 1, , ...,k p k p kP P P− − + . 
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3. Compute p  new control points iQ from the above 1p +  control points by using   
Eq. (27). 

 1(1 )i i i i iQ P Pα α−= − +  (27) 
where iα  is obtained from, 

 
ˆ

for 1i
i

i p i

k p i kξ ξ
α

ξ ξ+

−
= − + ≤ ≤

−  (28) 

By performing the above procedure, the new knot vector and control points are obtained as, 
 

 
{ }1 2 1

ˆ, ,..., , , ,...,+ξ ξ ξ ξ ξ ξk k m  
{ }1 2 1 2 1, ,..., , , ,..., , , ,...,k p k p k p k k k nP P P Q Q Q P P P− − + − + +

 (29) 

 
Now, this knot insertion algorithm is extended to a NURBS curve. For this purpose, a 

given NURBS curve in d-dimensional space is converted into a B-spline curve in (d+1)-
dimensional space, then by applying the knot insertion algorithm in this B-spline curve, the 
new control points are obtained. These new control points should then be projected to d-
dimensional space to obtain the new control points of the NURBS curve. Consider control 
points ( , )i i iP x y=  with corresponding weights of iw , by converting these control points to 3- 
dimensional space, ( , , )w

i i i i i iP w x w y w= , the new control points are then computed from Eq. 
(27), 
 1(1 )w w w

i i i i iQ P Pα α−= − +  (30) 
 
The location of control points in 2D are obtained by the following projection technique: 
 

 
1

1

(1 )
(1 )

w w
i i i i

i
i i i i

P PQ
w w

α α
α α

−

−

− +
=

− +  (31) 

and the weights are: 
 

1(1 )
iQ i i i iw w wα α−= − +  (32) 

 
 

3. IMPOSITION OF ESSENTIAL BOUNDARY CONDITION USING 
LAGRANGE MULTIPLIER METHOD 

 
In mathematical optimization, the method of Lagrange multiplier provides a strategy for 
finding the maximum and minimum of a function or functional subject to constraints. An 
element called the Lagrange multiplier (λ) makes a new term with constraints which can be 
either added or subtracted with objective function and results in the Lagrange function or 
functional. Then the optimum solutions for objective function or functional is obtained by 
finding stationary points of them (where the variations of Lagrange function or functional are 



IMPOSITION OF ESSENTIAL BOUNDARY CONDITIONS... 
 

 

257 

zero). In this study, the Lagrange multiplier method is employed as a scheme for treatment of 
essential boundary conditions.  

Considering the problem of minimizing the total potential energy functional of stress field 
problem given by, 

 

11 1

22 2

1minimize :
2

subject to :

.

.

.

N

T T T
b t

D

D

mm Dm

t d t u f d u f d

g u u on

g u u on

g u u on

π ε σ
Ω Ω Γ

= Ω − Ω − Γ

= − Γ

= − Γ

= − Γ

∫ ∫ ∫

 (33) 

 
Where { , }T

x yu u u= is the degrees of freedom vector of system, { , }T
i xi yiu u u= is the 

known value of displacement on DiΓ boundary, t is the thickness of object and m is the 
number of Dirichlet boundaries. For the inclusion of the constraints into the variational 
problem, using Lagrange multiplier method, instead of seeking the minimum of π  subjected 
to constraints, the Lagrange method seeks the stationary points that satisfies Eq. (34), 
 

 
1

1minimize : ( )
2 N Di

m
T T T

ib t i
i

t d t u f d u f d u u dπ ε σ λ∗

Ω Ω Γ Γ
=

= Ω − Ω − Γ − − Γ∑∫ ∫ ∫ ∫  (34) 

 
where iλ   is the Lagrange multiplier vector, corresponding to DiΓ and is defined by, 

 

 
ix

i
iy

λ
λ

λ
  =  
  

 (35) 

 
Now with approximation of iλ and ,u exact solution space will transform to approximate 
solution space, 

 
hu u Rd≅ =  (36) 

 
where Rand  d are defined in Eqs. (18) and (19). Then Lagrange multiplier vector is 
discretized for obtaining matrix form of problem, 

 

 1,2....,ii iN i mλ λ= =  (37a) 
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1

1

0 0
0 0

i i
nl

i i i
nl

N N
N

N N

 
=  

  

L L

L L  
(37b) 

 

 { }1 1 ......
Ti i i i

i x y nlx nlyλ λ λ λ λ=
 

(37c) 
 

where nl  is number of Lagrange multipliers. Ni(l) is a single-variable NURBS function given 
by Eqs. (2) and (3), where l is one of parametric components (ξ or η ). 

Ni(l) is defined on following kont vector  
 

 { }1 1 2 3 1
,..., , , ,..., , ,...,

n n n

Ti i i i i i i
il l l l l l l l

−
=

 
(38) 

 
where 

1

il  and 
n

il  are the coordinates of ith Dirichlet boundary end points in parametric space, 

which are repeated p times.  p  is either p or q depended on direction of Dirichlet boundary in 
parametric space.  

Substituting  Eqs. (36) and (37a) into Eq. (34), we have, 
 

 1

1 ( )
2

N Di

m TT T T T T T T
i ib t i

i
td B DB d d td R f d d R f d N Rd u dπ λ∗

=Ω Ω Γ Γ

= Ω − Ω− Γ − − Γ∑∫ ∫ ∫ ∫
 

(39)
 

 
The required solution of the problem is obtained by setting dπ∗∂ ∂  and iπ λ∗∂ ∂  to zero, 
 

 1

0
N Di

m
T T T T

ib t i
i

t B DBd d t R f d R f d R N d λ
=Ω Ω Γ Γ

Ω − Ω− Γ − Γ =∑∫ ∫ ∫ ∫
 

(40a) 

 
 1,2,....,

Di Di

T T
ii iN R d d N u d i m

Γ Γ
Γ = Γ =∫ ∫  

(40b) 

 
Then we obtain the system of algebraic equations, 
 

 
0T

dK G f
G qλ

      =    
       

(41) 

where, 

 

TK B DBd
Ω

= Ω∫
 

(42a) 

 
 [ ]1 ,

Di

T
m i iG G G G R N d

Γ

= − = Γ∫L L

 
(42b) 
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 [ ]1 ,
T

i

Di

im iq q q q N u d
Γ

= − = Γ∫L L  (42c) 

 
 

N

T T
b tf t R f d R f d

Ω Γ
= Ω + Γ∫ ∫  

(42d) 

 

 { }1 2
T

mλ λ λ λ= L L
 (42e) 

 
For imposition of essential boundary conditions in potential equation Eq. (12), the 

following term is subtracted from Eq. (13), 
 

 1
( )

Di

m

i i
i

u g dλ
Γ

=

− Γ∑∫
 

(43) 

 
The modified functional corresponding to Eq. (12) is, 
 

 *

1

1( ) . ( )
2 N Di

m

i i
i

u u u d u s d ut d u g dπ λ
Ω Ω Γ Γ

=

= ∇ ∇ Ω − Ω − Γ − − Γ∑∫ ∫ ∫ ∫  (44) 

 
By approximation of u and λ  and minimizing *π with respect to d and λ  vectors, the 

following system of algebric equations is obtained, 
 

 0T

dK G f
G qλ

      =    
     

 (45) 

where, 

 .TK R R d
Ω

= ∇ ∇ Ω∫  (46a) 

 
 

N

T Tf R sd R t d
Ω Γ

= Ω + Γ∫ ∫  (46b) 

 
Other parameters in Eq. (45) are defined in Eqs. (42b-e). It is also worthwhile to note that 

the defined parameters in these equations can be modified for single degree of freedom state. 
 
 

4. NUMERICAL EXAMPLES 
 

The accuracy and robustness of proposed method for imposition of essential boundary 
conditions are investigated through several numerical examples. For convergence study, the 
order of NURBS basis function (OF) is set to be 3 in both directions (OF=p=q=3). Numerical 
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integration within each element is carried out by 9×9 Gauss quadrature rule. The examples are 
also solved by higher orders (OF=4 and OF=5) to investigate the effect of higher orders on 
accuracy. Knot insertion procedure is applied in these examples for estimation of errors and 
convergence study and the L2-error norms are normalized with respect to their corresponding 
norms from the analytical solutions. In last example, an incomplete Diritchlet boundary 
problem is solved with three methods and compared with results obtained from FEM with a 
fine meshing. The effect of number of Lagrange multipliers ( N λ ) on error-norm, and running 
time in all examples are compared for three methods in Section 5. 

 
4.1. Potential equation 

Consider the potential problem on a quarter disk domain in Figure 5. The governing equation 
and boundary conditions are given in Eq. (12). The source term and boundary conditions for 
this problem are given by, 
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(a) (b) 

Figure 5. (a) Quarter disk, r i=50cm and ro=100cm; (b) Position of boundary control points 
 
So, the exact solution is obtained as, 
 

 

2 2 2

( , )
100

200x y
x yu − −

=
 

(48) 

 
The initial geometry is constructed by tensor product of quadratic NURBS basis functions. 

The initial parametric space is given by two knot vectors of the form, 
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{ }0 0 0 0.2 0.4 0.6 0.8 1 1 1ξ = and { }0 0 0 0.2 0.4 0.6 0.8 1 1 1η = .  
Using h refinement strategy, meshes with 25, 100 and 225 elements are considered for the 

convergence study (Figure 6).  
 

 
Figure 6. Improvement of meshing by knot insertion procedure in example 2 

 
The results obtained from three methods are compared in Figure 7. Since the control points 

are not located on 1DΓ  and  2DΓ  boundaries (Figure 5b), the DM has the least accuracy in 
comparison with two other methods, moreover the difference between error norms of DM and 
two other methods are remarkable. On the other hand, LM and TM have fairly the same L2-
error norm which is almost constant in meshing refinement procedure. This implies that LM 
and TM have converged in coarse meshing. These observations verify that LM and TM are 
more efficient than DM in the problems with curved boundaries, where the position of control 
points is not located on Dirichlet boundaries.  

 

10 maxlog ( )h  
Figure 7. L2-error norm for potential equation 

 
4.2. Cantilever beam 

Consider the cantilever beam problem which is solved by Wang and Xuan [13] as an example 
for demonstration of TM (Figure 8): 
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Figure 8. Cantilever beam problem 

 
The analytical solution of this problem for displacement in y direction is [27], 
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ν ν
ν ν

 
= − + − + + 

 
 = = − −
 = =

 (49) 

 
In this example plane stress condition is adopted, and knot vectors used for initial meshing 

are same as example 1. It is observed that DM still has the highest error among three methods 
(Figure 9). LM has the best convergence rate in meshing refinement procedure, while the TM 
results are close to LM in fine meshing. 

 

10 maxlog ( )h  
Figure 9. L2-error norm for cantilever beam 

 
4.3. An infinite plate with a centeral circular hole 

In this example, an infinite plate with a circular hole in center under x-direction traction xT is 
considered, as depicted in Figure 10(a).  The analytical solution for displacement in x and y 
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direction, given in [27], is as follows, 
 

 

3
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8

x
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θ θ θ θ θ
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where µ is the shear modules of material and k is given by, 

 

 

3 4 ( )
3 ( )
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plane strain
k
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ν
ν
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(51) 

 

 

 
Figure 10. (a) Infinite plate with a circular hole; (b) Numerical model 

 
Due to the symmetry, only one quarter of the domain is considered for numerical 

simulation. This model is subjected to the essential boundary condition computed from the 
exact solution. This problem is solved in the plane stress state and the following parameters 
are considered in the analysis, radius of the circular hole 1R = , plate width 4L = , x-direction 
traction 10xT = , modulus of elasticity 510E =  and Poisson's ratio 0.3ν = . Meshes with 
100, 400 and 1600 elements are considered for the convergence study (see Figure 11). The L2 
error norms are plotted in Figure 12, which show that good convergence rates is obtained for 
the Lagrange multiplier and transformation methods. DM is conveging with a lower 
convergence rate. 
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Figure 11. Mesh refinment for a quarter of symmetric infinte plate 

 

10 maxlog ( )h  
Figure 12. L2-error norm for infinite plate 

 
Effect of OF on error is depicted for 10x10 and 30x30 meshing in Figure 13. Order 

variation has no significant effects on accuracy of DM. But in TM  and LM the error-norm is 
decreased in higher orders. However in both meshing LM is more accurate than TM. 

 

                                 Nλ                                   Nλ  
(a) (b) 

Figure 13. effects of OF on L2-error norm for infinite plate problem (a) 10x10 meshing (b) 30x30 
meshing 
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4.4. Steady-state thermal transfer within hollow disk  

In this example, we consider steady-state thermal transfer within hollow disk domain. The 
thermal conductivity is assumed to be constant unity. The governing equation is then similar to 
the potential problem in the second example. The geometry of the problem is defined in Figure 
14. The exact temperature field in the hollow disk is given as, 

 

 
3 4( )u x y= +x  (52) 

 
Using this exact solution, the prescribed temperature field is imposed on the inner and 

outer boundaries of the hollow disk. The thermal source term can also be derived according to 
the exact temperature field.  

 
Figure 14. Steady-state heat transfer within hollow disk 

 
To verify the present approach, the results are compared with those obtained using TM. It 

should be noted that in this problem, unlike previous examples, the boundary control points do 
not lay on the physical problem boundary. For modeling the initial geometry, quadratic 
NURBS basis functions in both directions are employed. The initial knot vectors for this 
problem are, { }0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1ξ = , { }0,0,0,1,1,1η = . For one, two 
and three h-refinements of the initial geometry, physical meshes with 16, 64 and 256 elements 
are obtained (see Figure 15). The 2L error norm predicted by the present method, the direct 
approach and the transformation method are shown in Figure 16. Again, the present approach 
has provided the least level of errors and the optimal convergence rate in comparison with the 
other techniques.  

 

 
Figure 15. Mesh refinement for hollow disk 
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10 maxlog ( )h  
Figure 16. L2-error norm for hollow disk example 

 
4.5. Incomplete dirichlet boundary  

In the last numerical example the accuracy of DM, TM and LM is investigated in problems 
with incomplete Dirithlet boundaries. Consider the cantilever beam in example 4.3, which is 
incompletely restrained at the left site as shown in Figure 17. The beam is subjected to a 
uniform distributed load (w=10 10w= ) and the geometrical and mechanical properties are 
same as example 4.2. Since the exact solution for this problem is not available, the results of 
three methods are compared with results obtained from finite element method analysis, with a 
fine meshing consisting of 25000 elements.  The adapted element in FEM analysis is 
composed of four nodes and each node has two degrees of freedom (Figure 18).  

 

 
Figure 17. Incomplete Dirichlet boundary problem 

 

 
Figure 18. Q4 element 
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Since the boundary condition of problem is homogenous, so DM and TM have the same 
accuracy. For convergence study the meshing is refined by 20x20, 24x24, 28x28, 32x32, 
36x36 and 40x40 elements. The convergenc rate is depicted for three methods in Figure 19. 

 

 
Figure 19. L2-error norm for incomplete Dirichlet boundary problem 

 
LM has considerably more accuracy than two other methods. As shown in Figure 19, the 

convergence rate of DM and TM is too low that in very fine meshing the error-norm of these 
methods still has a noticeable difference with LM. By increasing the number of elements, LM 
shows more accuracy and its convergence rate is growing. This example implies that LM is 
more efficient than DM and TM (which are based on separation of control points) in problems 
with incomplete Dirichlet boundaries. 

 
 

5. RESULTS AND DISCUSSION 
 

In this section the effect of number of Lagrange multipliers (Nλ) on accuracy of proposed 
method is investigated for all numerical examples. The time cost is also compared for different 
meshing refinements in all three methods. In Figure 20 the effect of Nλ on error-norm is 
shown for all numerical examples (OF=3). Some features are similar in all examples. It is 
observed that in each example all curves have a same trend by meshing improvement. 
Moreover, more Lagrange multipliers are needed to obtain the minimum error as number of 
elements increases. In addition to similar features, all of them have a specific trend. In the all 
problems, increasing Nλ reduces the errors rate and the present approach has provided the 
optimal convergence rate in comparison with the other techniques.  
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Table 1. Comparing time cost between three methods in all numerical examples 

Time (s) 
TM DM LM 

Number of 
elements 

18.84 18.52 21.25 12 
29.69 30.46 35.93 14 
46.51 46.34 54.04 16 
69.33 71.23 71.98 18 

101.00 100.85 104.86 20 

 
Potential 
equation 
problem 

10.25 10.88 15.24 10 
14.31 15.02 21.25 12 
19.58 20.16 28.47 14 
26.47 27.28 38.14 16 
35.61 36.25 49.15 18 
47.30 46.99 60.25 20 

Cantilever beam 
problem 

13.93 14.46 24.52 10 
45.19 52.26 57.49 20 
98.32 107.04 128.36 30 

175.86 191.06 228.64 40 
293.14 323.2 362.41 50 

Infinite plate 
problem 

9.34 8.87 10.99 10 
24.54 24.00 25.32 12 
58.02 57.79 59.54 16 

122.46 138.00 123.09 20 

Hollow disk 
problem 

 

  
(a) Potential equation (b) Cantilever beam problem 
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(c) Infinite plate problem (d) Hollow disk problem 

 
(e) Incomplete Dirichlet boundary 

Figure  20. Effect of number of Lagrange multipliers on error-norm in LM 
 
 

6. CONCLUSION 
 

Lagrange multiplier method is adapted for imposition of essential boundary conditions in 
isogeomertric analysis. Unlike direct and transformation methods which are based on 
separation of control points, this method can model incomplete Dirichlet boundaries. The 
solution accuracy and convergence rates of this method are compared with direct and 
transformation methods through various numerical examples. The results of numerical 
examples confirms that the proposed method show more solution accuracy and better 
convergence rates in comparison with direct and transformation method.     
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