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ABSTRACT 
 

In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro-
Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto-
Rheological (MR) dampers is investigated. MR dampers are one of the most applicable 
methods in semi active control of seismic response of structures. Various mathematical 
models are introduced to simulate the dynamic behavior of MR dampers. The Modified 
Bouc-Wen model is an appropriate model that has an acceptable accuracy in calculating the 
generated force of dampers compared to others. In this model displacement and voltage of a 
MR damper are known while the force generated by MR damper is considered as the 
unknown. Because of highly nonlinear characteristics of modified bouc-wen model 
determination of inverse dynamic behavior of MR dampers are generally done using ANNs 
and ANFIS. Since the ANNs and ANFIS have different mechanisms for emulating desired 
functions, their responses may be different. In this research the performance of a Back 
Propagation Neural Network (BPNN), Radial Basis Functions Neural Network (RBFNN) 
and ANFIS in estimating the inverse dynamic behavior of MR dampers are compared. The 
results emphasize on the advancement of ANFIS to the other methods studied in estimation 
of inverse dynamic behavior of MR dampers. 
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1. INTRODUCTION 
 

Because of their wide dynamic range, low power requirement, large force capacity, and fast 
response rate to a variable control signal, magneto-rheological (MR) dampers have emerged 
as newly developed semi-active control devices that have been mass-produced for 
commercial applications [1]. 

MR dampers use MR fluids to produce controllable dampers. MR fluids typically consist 
of micron-sized, magnetically polarized particles dispersed in a carrier medium such as 
mineral or silicone oil. They are the magnetic analogs of electro rheological (ER) fluids, and 
like ER fluids, the essential characteristic of the MR fluids is their ability to reversibly 
change from a free-flowing, linear viscous fluid to a semi-solid in milliseconds when 
exposed to a magnetic field [2]. Owing to these attractive properties, MR dampers have got 
applications in a variety of areas such as vibration control of stay cables in cable stayed 
bridges[3], seismic protection of infrastructures [4, 2 and 5], vibration damping of 
automotive seats and suspensions of vehicles and trains [ 6 and 7]. 

In order to characterize the performance of MR dampers, several models have been 
proposed to describe their dynamic behaviors. These include the phenomenological model 
proposed by Spencer et al. [8] based on a Bouc–Wen hysteresis model, neural network 
model developed by Chang and Roschke [9], fuzzy model by Schurter and Roschke [10], 
nonlinear black box model by Jin et al. [11]and polynomial model by Choi et al. [12]. 
Among these MR models, it is found from the literature [8] that phenomenological model 
and viscoelastic–plastic model can accurately describe the dynamic behaviors of the MR 
dampers, but the corresponding models for the inverse dynamics of the MR dampers are 
often difficult to obtain due to their highly nonlinear characteristics. For this reason there are 
some analytical and numerical methods to obtain the appropriate input signal namely as 
voltage or current. Some of analytical models are the inverse Bingham, inverse Polynomial, 
inverse Bouc-Wen and inverse modified Bouc-Wen models [13]. In recent decade some of 
scientists became interested to use the artificial methods in this field. Xia has introduced an 
inverse model of the MR damper using multi-layer perception optimal neural network and 
system identification [14]. Du et al. [1]are offered an approach to approximate the forward 
and inverse dynamic behaviors of MR damper using evolving radial basis function (RBF) 
networks to obtain parameters of RBF Networkusing genetic algorithm. Karamodin and 
Kazemi [15] developed an inverse neural network model to replicate the inverse dynamics 
of the MR damper using multi-layer perception neural network. Askari et al. [16] proposed a 
Takagi-Sugenofuzzy inverse model of dampers, derived using subtractive clustering, non-
dominated sorting genetic algorithm II (NSGAII) and adaptive neuro-fuzzy inference 
systems (ANFIS). 

In section 2 of this article, the phenomenological Bouc-Wen model of MR dampers will 
be introduced. In section3, BP and RBF neural networks and ANFIS are expressed. The 
results of training and testing the networks are illustrated in Section 4. Section 5 represents 
the results of verification of trained network with a different input data. Finally section 6 
outlines the comparison of the three networks. 
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2. PHENOMENOLOGICAL BOUC-WEN MODEL OF MR DAMPERS 
 

As mentioned in previous section, there are some analytical models like Bingham 
viscoplastic, Gamota and Filisko, Bouc-Wen and Phenomenological Bouc-Wen models to 
determine MR produced force [8].Phenomenological Bouc-Wen model of MR dampers has 
been proposed by Spencer et al. at 1997 that can effectively portray the behavior of a typical 
MR damper as shown in Figure 1. 

 

 

Figure 1. Phenomenological Bouc-Wen model of MR dampers [8] 
 
This phenomenological model is based on a Bouc–Wen hysteresis model, which is 

tractable and is capable of representing a wide variety of hysteretic behaviors. The 
parameters for the model are shown in Table 1. They are determined from the experimental 
data with appropriate optimization method [8]. This model is validated in a variety of 
representative experimental tests. The verification results indicate that the phenomenological 
model of an MR damper is accurate over a wide range of operating conditions and is 
appropriate for control design and analysis. The phenomenological model is governed by the 
following equations: 
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  u u v    (7) 
 
According to the flowchart in Figure, having prescribed the patterns of displacement x 

and voltage v, the force f of the prototype damper will be obtained. 
 

Voltage 

Displacement 

Phenomenological Bouc-
Wen model of MR damper 

Force of MR 
Damper 

 

Figure 1. Flowchart of data acquisition process 
 

Table 1. Parameter values of MR damper model [8] 

Parameters Unit Value Parameter Unit Value 

0ac  N.s/cm 21.0 a  N/cm 140 

0bc  N.s/cm.V 3.50 b  N/cm.V 695 

0k  N/cm 46.90   cm-2 363 

1ac  N.s/cm 283   cm-2 363 

1bc  N.s/cm.V 2.95 A   301 

1k  N/cm 5.00 n   2 

0x  cm 14.30   s-1 190 

 
 
3. INVERSE DYNAMIC MODEL OF MR DAMPERS USING ARTIFICIAL 

NETWORKS 
 

The MR damper model discussed earlier in this paper estimates damper forces based on the 
inputs of displacement and voltage using Eqs.1-7. The damper displacement is the same as 
the displacement of the floor to which the damper is connected. Thus, the voltage signal is 
the only parameter that can be modified to control the damper force to produce the required 
control force. Therefore, it is essential to develop an inverse dynamic model that predicts the 
corresponding control voltage to be sent to the damper, so that an appropriate damper force 
can be generated. On the other hand, because of the highly nonlinear nature of the MR 
damper, a mathematical model for its inverse dynamics is difficult to obtain. Thus, in this 
paper using artificial networks, inverse dynamic emulators of MR dampers are generated 
and compared. 
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4. ARTIFICIAL NEURAL NETWORKS 
 

4.1. Back propagation neural networks 

BPNN is usually based on the error back propagation to the multi-layer neural network. It 
was designated by Rumelhart and McCelland and their research team in 1986. Transfer 
function of BPNN usually uses Sigmoid function. It lays between the input and output 
arbitrary nonlinear mapping. This makes it a more extensively applicable to function 
approximation [17], pattern recognition, data compression field. BPNN is usually based on 
BP neurons in the multi-forward neural network structure [18]. Typical BPNN network 
structure is shown in Figure . 
 

 

Figure 3. Back Propagation Neural Network [18] 
 
In BPNN, synaptic weights are the only type of parameters and can be updated by 

learning algorithms. Based on error back propagation procedure, various gradient algorithms 
are developed for traditional neural network. First order gradient methods are stable, but 
very time consuming, and usually fail to converge to very small errors. Training speed and 
accuracy are significantly improved by applying second order gradient methods, such as 
Levenberg- Marquardt (LM) algorithm [19]. Table 2, shows the parameters of BPNN used 
in this study. 

Table 2. BPNN Properties 

Input 
Layer 

Hidden Layer Output Layer 

training 
algorithm Number of 

Inputs 
Number 
of Layer 

Neurons 
Activation 
function 

Number 
of 

Output 

Activation 
function 

Max 
Epoch 

LM 5 1 60 tansig 1 purelin 1000 

 
4.2. Radial basis function neural networks 

Generally, a RBFNN consists of three layers: the input layer, the RBF layer   so called as the 
hidden layer and the output layer. The inputs of hidden layer are the linear combinations of 
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scalar weights and the input vector T
1 2 nX [x , x ,..., x ] , where the scalar weights are usually 

assigned to unity. Thus the whole input vector appears to each neuron in the hidden layer. 
The incoming vectors are mapping by the radial basis functions in each hidden node. The 
output layer yields to a vector 1 2 mY [y , y ,..., y ] for m outputs by linear combination of the 

outputs of the hidden nodes to produce the final output. Typical RBFNN structure is shown 
in Figure. 

A radial basis function is a multidimensional function that describes the distance between 
a given input vector and a pre-defined center vector. There are different types of radial basis 
functions. However in RBFNN, usually a normalized Gaussian function is used as the radial 
basis function. Table 3, shows the parameters of RBFNN used in this study. 

 
Table 3. RBFNN Properties 

Input Layer Hidden Layer Output Layer 

Number of 
Inputs 

Number 
of Layers 

Max 
Neurons 

Activation 
function 

Number 
of 

Outputs 

Activation 
function 

5 1 60 Gaussian 1 purelin 

 

 

Figure 4. Radial Basis Function Neural Network [18] 
 
 

5. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 
 

ANFIS is a hybrid intelligent system introduced by Jang at 1993 [20], and has the ability of 
Fuzzy Logic (FL) to reason with neural network to learn. The goal of ANFIS is to find a 
model which will simulate correctly the inputs with corresponding outputs. The Fuzzy 
Inference System (FIS) is a knowledge representation where each fuzzy rule describes a 
local behavior of the system. ANFIS is the network structure that implements FIS and 
employs hybrid-learning rules to train. Figure(a), illustrates the reasoning mechanism for 
this Sugeno model. The corresponding equivalent ANFIS architecture is shown in Figure(b), 
where the nodes of the same layer have similar functions [21]. 
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Figure 5. Adaptive Neuro-Fuzzy Inference System (ANFIS) [21] 
 
 

6. DATA COLLECTION 
 

In this paper the network models are trained using input-output data, generated analytically 
using the simulated MR model based on Eqs. 1-7. According to Figure 6, the networks 
calculate the voltage signal (V(t))  based on the current and previous history of measured 
displacement (x(t),x(t-1)) and desirable control force (F(t),F(t-1)). To insure creation of a valid 
model, data used for training must thoroughly cover the spectrum of operation in which the 
damper will function. For this reason, the training data contains displacements that range 
from ±10 cm and whose frequency content ranges from approximately 0–3 Hz. Ranges of 
voltage signal and frequency are 0–10 volts and 0–3 Hz respectively. Signals used for 
training are produced using band-limited, Gaussian white-noise. Using these inputs, MR 
damper model was solved for 8 seconds, during which the corresponding damper force 
where determined. A time step of 0.002 seconds is used to produce a total of 4000 sets of 
data. Figure shows time histories of displacement, voltage, and damper force. Data for 
voltage was bounded below zero for all time to avoid use of negative voltages. 
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F-MR(t-1) 

F-MR(t) 

Disp(t-1) 

Disp(t) 

Volt(t-1) 

Artificial or Fuzzy-Based 
Neural Networks 

Volt(t) 

 

Figure 6. Flowchart of Inverse dynamic behavior of MR damper using networks 
 
The networks were trained using only 35%, the results of which were illustrated in Figure 

7. The remaining 65% of data were used as testing sets. Due to the  random behavior of 
artificial networks, to study the reliability of the trained networks, and also to compare the 
validity of different models based on either of the types ANFIS, RBFNN or BPNN, all 
training and testing sets were selected randomly for 10 times. The performance criteria for 
the networks were compared, where Mean squared error (MSE) and performance factor (Ev) 
are used as performance criteria. Performance factor (Ev) has been calculated using Eq. 8 as 
follows: 

        
N N2 2

v d p d d
i 1 i 1

E v i v i / v i mean v
 

         (8) 

 
where dv , pv  and N are desired Voltage, predicted voltage and number of data respectively. 

 

Figure 3. History of input and output data for training and testing the networks 
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7. RESULTS AND DISCUSSION 
 

The desired voltage shown in Figure 7(b), was compared with the predicted voltages using 
the aforementioned three networks. They were then plotted in Figure. A performance 
comparison of the networks was shown in Figure 2-12. As one depicts, the BPNN has best 
performance in training process compared to other networks. However, in testing process 
the BPNN exhibits the worst prediction comparatively. This phenomenon is originated from 
overtraining or over fitting of BPNN. 

ANFIS did not reveal good performance in training process whereas it displayed the best 
prediction with testing samples. This could originate from using fuzzy logic and neural 
network simultaneously. 

 

 

Figure 4. Comparison of Target Voltage and Predicted ones using Networks 
 

 

Figure 2. Comparison of MSE criterion in training process of networks 
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Figure 3. Comparison of the performance factor (Ev) in training process of networks 
 

 

Figure 4. Comparison of the MSE criterion in testing process of networks 

0.00E+00 2.00E-02 4.00E-02 6.00E-02

The Best

The Worst

Mean

The Best The Worst Mean

ANFIS 1.17E-02 1.20E-02 1.19E-02

RBFNN 1.27E-02 1.37E-02 1.30E-02

BPNN 3.39E-02 6.08E-02 4.80E-02  

Figure 8. Comparison of the performance factor (Ev) in testing process of networks 
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8. CONCLUSION 
 

In structural control, optimal control force which suppers the excitation of buildings, must be 
generated by a control device. In this paper MR damper as a reliable device in semi active 
control of structures has been used to generate the optimal control force to dissipate the 
excitation of structures. MR dampers work with input voltages and displacements to produce 
control forces. Considering the fact that inverse dynamic behavior of MR dampers is highly 
nonlinear, their modeling development could therefore be so difficult. In the present study, an 
inverse model of MR dampers has been proposed using Back Propagation Neural Network 
(BPNN), Radial Basis Function Neural Network (RBFNN) and Adaptive Neuro-Fuzzy 
Inference System (ANFIS) and their performances have been compared. In these networks the 
current and previous history of forces and displacements are considered as input while the 
voltages of MR damper is considered as the output. The networks have been trained and tested 
10 times and the best, the worst and average of results are determined. Maximum differences 
of all runs did not exceed a fraction of a digit value, ensuring the reliability of the programs 
developed. Among the three types of neural networks developed and investigated, the BPNN 
presented the lowest errors in training process but lagged on the accuracy during testing 
process comparatively. This may be due to the overtraining phenomenon of BPNN. ANFIS 
however, performed the best prediction performance in testing process. RBFNN results 
similarly were satisfactorily close to those of ANFIS. Since in inverse dynamic behavior of 
MR dampers accuracy is of major concern, this paper may suggest utilization of ANFIS or 
RBFNN as emulator of inverse dynamic behavior of MR dampers. 
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