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ABSTRACT 
 

Optimum control of upstream pumping station in open channels with given constraint in 
downstream end is presented in this paper. The upstream control is capable of minimizing 
water level fluctuations in the channel in which the downstream pumping station causes an 
undesirable wave. The proposed method combines an unsteady non-uniform flow solver 
with shock-capturing capability, Fourier series and metaheuristic firefly algorithm. Fourier 
series is used to estimate the optimum inflow control and firefly algorithm is utilized to 
determine the unknown coefficients in the series. With a suitable objective function, the 
procedure generates the optimum inflow hydrograph that can effectively cancel destructive 
downstream waves. The results have been compared with the results obtained by a 
variational approach and show satisfactory improvement both in simplicity and the value of 
objective function. 
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1. INTRODUCTION 
 

Rapidly varied flows usually develop shocks in flow domain which should be treated 
accordingly in flow simulation models. Development of shocks is due to abrupt changes in 
flow conditions such as flow rate or water depth. Various well-known shock-capturing 
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schemes are available in the literature to deal with shocks [1-6]. 
In common water conveyance projects, a pumping station at upstream end of the channel 

supplies water from a river or well and a downstream pumping station pumps the necessary 
water to the consumers. Unsteady conditions can occur for example by sudden change in 
downstream water demand. In order to compensate the increased downstream demand, the 
upstream flow rate supplied by pumping station should be increased accordingly. This 
discharge increment in both upstream and downstream ends produces undesirable surges 
which travel downstream and upstream of the channel [7, 8]. Depending on the flow rates, 
large oscillations in water level cause severe problems such as serious water losses due to 
water level exceeding the freeboard, bank erosion, efficiency reduction and damage of 
equipment in the plant. On the other hand, previous studies have revealed that undesirable 
waves produced in either end of the channel can be effectively canceled by a suitable flow 
control in the opposite end [9]. The problem can be regarded as an optimization problem to 
determine the optimum control which should be applied at one end to minimize the water 
surface fluctuations in the channel. Atanov et al. [10] proposed a variational approach for 
minimizing water-level deviations from a desired value to find an optimum inflow 
hydrograph (upstream control). They idealized the problem for a frictionless channel with 
trapezoidal cross-section and followed a fairly complicated procedure using calculus of 
variations techniques to find a solution for such simplified problem. Unfortunately, it is 
impossible to extend their procedure for more general cases and an alternate simpler way 
should be sought. 

Powerful metaheuristic algorithms such as ant colony and particle swarm optimizations have 
been already used in solving difficult engineering problems successfully. Recently, a 
metaheuristic firefly algorithm has been proposed by Yang [11]. Implementation of this 
algorithm in water engineering problems has not yet been tested. Firefly algorithm has some 
advantages such as simplicity and intrinsic capability of finding local optimums. Most water 
engineering optimization problems can be solved by metaheuristic algorithms, if the problem 
can be appropriately transformed to an optimization problem suited to these kinds of algorithms. 

In this paper, the problem of finding optimal upstream control of a channel containing 
two pumping stations in both ends is solved by an innovative metaheuristic approach. The 
problem is first defined as an optimization problem using Fourier series. The unknown 
coefficients of the series can be next determined by firefly algorithm. The procedure 
simultaneously employs a shock-capturing unsteady flow solver based on TVD-
MacCormack scheme and firefly optimizer module. Both modules have been programmed in 
digital visual FORTRAN environment whereas MATLAB software has been employed for 
visualization of the results. The results show satisfactory improvement in the value of the 
objective function found by Atanov et al. [10]. Moreover, since the flow solver module of 
the proposed method is general, the previous limitations assumed for flow and channel 
conditions are practically removed in current study. 

 
 

2. PROBLEM FORMULATION 
 

The channel shown in Figure 1 has a finite length of L. The non-uniform water depth for 
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steady state flow is  in which x denotes the longitudinal direction. In unsteady flow 

case, the channel depth (and velocity) is a function of both distance x and time t and it can 
be denoted by H (x, t). The unsteady flow is governed by well-known Saint Venant 
equations as follows [12]: 
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in which A(x, t) is the cross sectional area of flow, Q(x, t) is discharge, V(x, t) is flow 
velocity, y  is the vertical distance between water surface and the centroid of the cross 

section, 0S  is the channel's longitudinal slope, fS  is the energy slope that represents the 

effect of friction and g is gravitational acceleration. The first equation is continuity equation 
and the second one is momentum equation. 
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Figure 1. Definition of parameters in open channel flow 
 
Either water depth or discharge must be specified on the ends of the domain to determine 

the water surface profile within the domain. For unsteady flow, the problem is subjected to 
following initial conditions: 
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where both  )(1 x  and )(2 x  are known functions since initial conditions are specified. The 

channel is bounded by pumping stations on both ends, imposing boundary conditions on 
discharge as: 
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It is assumed that the operation of downstream pumping station is specified and hence the 



A. Baghlani 

 

372 

function )(t is known. For specified function )(t  acting on downstream end, the 

problem is to find the optimal control (or controlling function)  )(t  subject to governing 

equations (1) and (2), initial and boundary conditions (3) , (4b), such that the water level 
deviation from the initial and desired water depth )(0 xH  is minimized. 

 
 
3. DEFINING THE PROBLEM AS A METAHEURISTIC OPTIMIZATION 

PROBLEM 
 

The problem defined in the previous section can be solved via different approaches. Atanov 
et al. [10] developed a variational approach to solve the problem with some simplifications 
such as assuming frictionless channel with trapezoidal cross section. They followed a 
relatively complicated procedure to find an optimum control for )(t . In this study, by 

defining the problem as a metaheuristic optimization problem, a more general approach is 
developed for finding controlling function )(t . To achieve this, the first step is to define an 

objective function for the problem. Mathematically, the objective function is an averaged 
value of deviations from )(0 xH   in all times and distances as: 
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in which T is a given transient duration or duration time over which the solution is sought. 
Clearly, since ),( txH  depends on boundary condition )(t , the value of objective function 

f is also a function of )(t . 

In a numerical solution of equations (1) and (2), since the domain of the problem is 
discretized both spatially and temporally, the objective function can be written as follow:  
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where  Lxk  and Ttn  . 

The second step is to approximate controlling function )(t  such that it can be estimated 

and optimized by an optimization algorithm. For duration time T, the function )(t  can be 

expanded using Fourier series: 
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By means of equation (7), one can choose a maximum value for m (i.e. the maximum 

number of sine and cosine terms in the Fourier series) and optimize these values by an 
optimization method. The more terms in Fourier series, the more accurate estimation of  

)(t . However, it is worth pointing out that choosing a large number of optimization 
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parameters in any optimization algorithm expands the searching space extensively and 
consequently the algorithm may be unable to find a solution.  

Defining a vector of optimization variables as unknown coefficients of Fourier series as X: 
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the task is to find the best vector X that minimizes the objective function in Eq. (6).  

After some trials, m=5 was adopted in this research. Therefore, the optimization vector X 
contains total number of 11 unknown coefficients 54321054321 ,,,,,,,,,, bbbbbbaaaaa  that 

should be optimized.  
 
 

4. AN OVERVIEW ON FIREFLY OPTIMIZATION ALGORITHM 
 

The Firefly Algorithm (FA) is one of the latest metaheuristic algorithms. Firefly algorithm is 
a nature-inspired algorithm, which was first developed by Yang [11] inspired by the light 
attenuation over the distance and fireflies' mutual attraction. Algorithm considers what each 
firefly observes at the point of its position, when trying to move to a greater light-source, 
than is his own. Firefly algorithm idealizes some of the characteristics of the firefly behavior 
in nature. They follow three rules: i) all the fireflies are unisex, ii) attractiveness is 
proportional to their flashing  brightness which decreases as the distance from the other 
firefly  increases due to the fact that the air absorbs light. Since the most attractive firefly is 
the brightest one, to which it convinces neighbors moving toward. In case of no brighter 
one, it freely moves any direction and, iii) brightness of every firefly determines its quality 
of solution; in most of the cases, it is proportional to the objective function.  

The main steps of the FA start from initializing a swarm of fireflies, each of which is 
determined the flashing light intensity. During the loop of pairwise comparison of light 
intensity, the firefly with lower light intensity will move toward the higher one. The moving 
distance depends on the attractiveness. After moving, the new firefly is evaluated and 
updated for the light intensity. During pairwise comparison loop the best-so-far solution is 
iteratively updated. The pairwise comparison process is repeated until termination criteria 
are satisfied. Finally, the best-so-far solution is visualized. 
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To define the most important parameters in firefly algorithm suppose it is a night with 
absolute darkness, where the only visible light is the light produced by fireflies. The light 
intensity of each firefly is proportional to the quality of the solution, it is currently located 
at. In order to improve own solution, the firefly needs to advance towards the fireflies that 
have brighter light emission than is his own. Each firefly observes decreased light intensity, 
than the one firefly actually emit, due to the air absorption over the distance.  

Attractiveness of a firefly abides the law [11]: 
 

 )exp(0 r   (9) 

 
in which 0  is the attractiveness in distance r=0 and   is light absorption coefficient in the 

range  ,0 . The distance r between firefly i and j at  and  is defined as Cartesian 

distance: 
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where kix ,  is the kth component of the spatial coordinate of the ith firefly and d is the 

number of dimensions. Moreover, the movement of firefly i which is attracted by a more 
attractive or brighter firefly j is given by the following equation: 
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where the second term is due to the attraction. The third term is randomization with α being 
the randomization parameter such that α ∈ [0, 1], and   is a vector of random numbers 
drawn from a Gaussian distribution or uniform distribution in the range [0, 1]. Furthermore, 
for most problems, one can take 10   

 
 

5. UNSTEADY FLOW SIMULATION 
 

In order to find the optimal control )(t  which minimizes the water surface fluctuations f in 

Eq. (6) for specified time interval T and channel length L, an unsteady non-uniform flow 
simulation with shock-capturing ability is necessary. The shock-capturing ability 
requirement of the numerical scheme is because of development of strong shocks in the flow 
domain due to abrupt changes in flow rate at upstream and downstream pumping stations.   
On the other hand, since the simulation of flow should be accomplished several times in the 
optimization procedure, a robust and satisfactory accurate model with low computational 
cost is recommended. In this study a TVD-MacCormack scheme is adopted for this purpose. 
This is a shock-capturing scheme with low computational cost compared to other numerical 
schemes and suitable accuracy. 

To simulate flow with TVD-MacCormack scheme, first, the one-dimensional governing 
equations (1) and (2) are written as: 
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The vector S is the vector of conserved variables, F is flux vector and C is the source 

term. The energy slope can be expressed by means of Manning roughness coefficient n as: 
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TVD-MacCormack scheme combines the well known MacCormack scheme with total 

variation diminishing (TVD) approach to build a robust high-resolution scheme. The 
MacCormack scheme is a two-step predictor-corrector scheme. In the predictor stage, a 
backward difference discretization is used whereas in the corrector stage a forward 
difference discretization is employed. This type of discretization well agrees with both 
upstream and downstream travelling waves associated with positive and negative 
eigenvalues of the problem. A TVD stage of the procedure has been added to the 
MacCormack scheme by Davis [13] and has been developed by Mingham et al. [14] and 
Liang et al. [15]. The whole procedure can be summarized as follows: 
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The corrector step: 
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The TVD step: 
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in which x and t are the spatial and temporal steps, respectively, the superscript n 
denotes time step, the subscript i denotes the node number. Moreover, the following 
relations hold: 
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The brackets indicate the scalar product of the two vectors in the bracket.  
The function G which has been employed to ensure TVD property of the scheme is 
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defined as: 

 G ( x ) 0.5 [1 ( x )]      (18) 

 
in which the flux limiter function )(x  has been employed to suppress the spurious 

numerical oscillations and is defined as follows: 
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in which CFL is the well known Courant-Friedrichs-Lewy number defined as: 
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The overall proposed procedure to solve the problem of optimization of water surface 

fluctuations by firefly algorithm has been shown in Table 1 as a pseudo code. 
 

Table 1. The pseudo code to find optimal controlling function using firefly algorithm 

Set 1k  ; 

Randomly initialize the solution vector  )(k
ix . 

Light intensity if  at )(k
ix  is determined by f( )(k

ix ) using Unsteady Flow Simulator 

Define light absorption coefficient   

WHILE (the termination conditions are not met) 

    define )(t  for each vector )(k
ix  using Eq.(7); 

             FOR i=1:n   (all n fireflies, i.e. all n candidate curves) 
               Call Unsteady Flow Simulator to obtain if  

          END FOR 
 
             FOR i=1:n   (all n fireflies) 
                     FOR j=1:n   (all n fireflies) 
                               Compute distance r between firefly i and j 
                               If ( ji ff  ),  Move firefly i towards j using Eq.(11); end if 

                               Vary attractiveness with distance r 
                  END FOR j 
           END FOR i 
Rank the fireflies and find the current global best 

Set  1k k   
END WHILE 
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6. DESIGN EXAMPLE 
 

The problem solved by Atanov et al. [10] is considered here as an example to implement the 
proposed technique and compare the results.  

To define the problem, consider steady state flow in a channel with rectangular cross 
section and 20km long and 30m wide. The flow rates of the supplying (upstream) and 
withdrawing (downstream) pumping stations are initially the same. The initial and desired 
water depth in the channel is 3.6 m with initial flow rate equal to 100 m3/s. The unsteady flow 
in the problem starts by increase in the downstream pumping station withdrawal rate. The 
downstream flow demand is increased by 50% so that sm /150 3 . The flow was simulated 

by the method described in section 5 with mx 400 . The required time steps were 

automatically calculated by means of Eq. (21) and the total simulation time was 4 hours. 
If the controlling upstream flow rate, )(t is not optimized, the only way to maintain the 

water level in the channel is obviously matching the downstream flow rate, i.e., to also 
increase the flow rate at the upstream (supplying) pumping station by 50%. Another strategy 
is to impose a control on upstream pumping station so that the introduced waves cancel the 
waves that travel in opposite directions along the channel. Atanov et al. [10] obtained an 
optimal curve by variational approach to do this.  Figure 2 shows the upstream flow rates for 
the two cases (with control shown with solid line, and without control shown in dashed 
line). When no control is imposed at upstream end, the water surface elevation time series at 
the two ends of the canal are as shown in Figure 3. As shown in the Figure 3, abrupt change 
of the flow rates at both pumping stations at two ends develops waves which move in 
opposite directions along the channel. A positive wave moves downstream, while a negative 
wave moves upstream. However, the waves do not simply cancel each other. When the 
waves reach the end of the channel, they reflect. This process develops remarkable 
fluctuations within the channel as shown in 3D view in Figure 4. The value of objective 
function in this case is the considerable value of 2396.33 m for full length of channel and 
over the simulation time. The results of imposing the control found by Atanov et al. [10] are 
included for the sake of comparison. If this upstream control (shown by solid line in Figure 
2) is imposed, the desired flow rate starts at a larger value than the downstream flow rate as 
shown in the Figure. This sounds to be necessary to compensate for the negative wave 
moving upstream. The upstream flow rate then oscillates around the value corresponding to 
the downstream flow rate. The time series of water level fluctuations at both ends are 
depicted in Figure 5 for this case. According to the length of the channel, approximately 1 
hour is required for two waves to contact each other. After this time, the fluctuations of the 
water level are small compared to the case of no upstream control (Figure 3) and around to 
the desired water level as shown in Figure 5. The 3D view of water level fluctuations is 
given in Figure 6. Obviously, the water-level fluctuations at the pumping stations and whole 
channel are reduced when the upstream flow rate is optimized using the variational 
approach. The value of objective function has been considerably reduced to 1107.39 m by 
imposition of a suitable control and the water level has been stabilized.  
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Figure 2. Optimal control found in [10] versus no control at upstream end 
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Figure 3. Upstream and downstream time series of water surface level when no control (dashed 
line in Figure 2) is imposed at upstream end 

 
In the next step, the method described in this study was used to find the optimal control. 

After various runs, the following design variables were found by the proposed approach 
with minimum value of objective function equal to 1015.58 m: 
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which offers the following optimal curve: 



OPTIMAL CONTROL OF PUMPING STATIONS IN OPEN CHANNELS... 
 

 

379

 


















































































T

t
Cos

T

t
Cos

T

t
Cos

T

t
Cos

T

t
Cos

T

t
Sin

T

t
Sin

T

t
Sin

T

t
Sin

T

t
Sint








5
1951.86

4
061.415

3
882.580

2
24.2498998.50145.2253

5
6161.71

4
973.288

3
99.1226

2
694.71499.3697)(

 (23) 

 
in which T=14400 sec  is total simulation time. 
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Figure 4. A 3D view of water level fluctuations in the whole channel over simulation time when 
no control (dashed line in Figure 2) is imposed at upstream end (f=2396.33 m) 
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Figure 5. Upstream and downstream time series of water surface level when the control found in 
[10] (solid line in Figure 2) is imposed at upstream end 

 
The curve defined by Eq. (23) is depicted in Figure 7.  The curve found by the proposed 

method has the similar trend of the curve found by variational approach (Figure 2). 
However, the value of objective function is less while imposing Eq. (23) at upstream end 



A. Baghlani 

 

380 

rather than imposing the curve shown in Figure 2. The optimal curve found by the proposed 
approach has reduced the water level fluctuations by 91.81 m (approximately 9% smaller 
than variational approach). The effect of imposing the optimal curve of Eq. (23) at upstream 
end on time series of water surface fluctuations at both ends is shown in Figure 8. As it is 
clear in this figure, the fluctuations have been reduced compared to Figure 3 and Figure 5. 
The water level has been more stabilized after 2 hours compared to Figure 5 which indicates 
the better performance of the proposed optimal curve. For further evidence, 3D view of 
water surface fluctuations has been shown in Figure 9. Compared to imposition of optimal 
curve found by variational approach, the proposed optimal control shows fewer fluctuations. 
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Figure 6. A 3D view of water level fluctuations in the whole channel over simulation time when 
the control found in [10] (solid line in Figure 2) is imposed at upstream end (f=1107.39 m)  
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Figure 7. Upstream control found by proposed approach (solid line) 
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Figure 8. Upstream and downstream time series of water surface level when the control found in 
this study (solid line in Figure 7) is imposed at upstream end  
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Figure 9. A 3D view of water level fluctuations in the whole channel over simulation time when 
the control found in this study (solid line in Figure 7) is imposed at upstream end (f=1015.58 m) 

 
 

7. SUMMARY AND CONCLUSION 
 
The optimal control on pumping stations in conveyance open channels was found by a 

metaheuristic firefly algorithm. The process involves combining a shock-capturing flow 
simulator, Fourier series and firefly optimization algorithm are utilized to obtain the 
optimum values of the coefficients of the Fourier series expansion of optimal curve. The 
results showed that the proposed method is very effective and much simpler than the direct 
mathematical methods such as variational approach. Better results may be found by 
considering more terms in the Fourier series. However, the size of the searching space will 
increase and it will need more efforts to find the optimal values. The idea of expanding the 
desired curve by Fourier series and finding the optimum coefficients may also be applied to 
similar problems. 
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