Showing 3 results for Paknahad
M. Paknahad, P. Hosseini, A. Kaveh,
Volume 13, Issue 1 (1-2023)
Abstract
Optimization methods are essential in today's world. Several types of optimization methods exist, and deterministic methods cannot solve some problems, so approximate optimization methods are used. The use of approximate optimization methods is therefore widespread. One of the metaheuristic algorithms for optimization, the EVPS algorithm has been successfully applied to engineering problems, particularly structural engineering problems. As this algorithm requires experimental parameters, this research presents a method for determining these parameters for each problem and a self-adaptive algorithm called the SA-EVPS algorithm. In this study, the SA-EVPS algorithm is compared with the EVPS algorithm using the 72-bar spatial truss structure and three classical benchmarked functions
M. Paknahad, P. Hosseini, S.j.s. Hakim,
Volume 13, Issue 2 (4-2023)
Abstract
Metaheuristic algorithms have become increasingly popular in recent years as a method for determining the optimal design of structures. Nowadays, approximate optimization methods are widely used. This study utilized the Self Adaptive Enhanced Vibrating Particle System (SA-EVPS) algorithm as an approximate optimization method, since the EVPS algorithm requires experimental parameters. As a well-known and large-scale structure, the 582-bar spatial truss structure was analyzed using the finite element method, and optimization processes were implemented using MATLAB. In order to obtain weight optimization, the self-adaptive enhanced vibration particle system (SA-EVPS) is compared with the EVPS algorithm.
M. Paknahad, P. Hosseini, A. R. Mazaheri, A. Kaveh,
Volume 15, Issue 2 (4-2025)
Abstract
This study presents a novel approach for optimizing critical failure surfaces (CFS) in homogeneous soil slopes by incorporating seepage and seismic effects through the Self-Adaptive Enhanced Vibrating Particle System (SA_EVPS) algorithm. The Finite Element Method (FEM) is employed to model fluid flow through porous media, while Bishop's simplified method calculates the Factor of Safety (FOS). Two benchmark problems validate the proposed approach, with results compared against traditional and meta-heuristic methods. The SA_EVPS algorithm demonstrates superior convergence and accuracy due to its self-adaptive parameter optimization mechanism. Visualizations from Abaqus simulations and comprehensive statistical analyses highlight the algorithm's effectiveness in geotechnical engineering applications. The results show that SA_EVPS consistently achieves lower FOS values with smaller standard deviations compared to existing methods, indicating more accurate identification of critical failure surfaces.