Search published articles


Showing 7 results for Sedaghat Shayegan

D. Sedaghat Shayegan, A Lork, S.a.h. Hashemi,
Volume 9, Issue 3 (6-2019)
Abstract

In this paper, the optimum design of a reinforced concrete one-way ribbed slab, is presented via recently developed metaheuristic algorithm, namely, the Mouth Brooding Fish (MBF). Meta-heuristics based on evolutionary computation and swarm intelligence are outstanding examples of nature-inspired solution techniques. The MBF algorithm simulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. This algorithm uses the movement, dispersion and protection behavior of Mouth Brooding Fish as a pattern to find the best possible answer. The cost of the system is considered to be the objective function, and the design is based on the American Concrete Institute’s ACI 318-08 standard. The performance of this algorithm is compared with harmony search (HS), colliding bodies optimization (CBO), particle swarm optimization (PSO), democratic particle swarm optimization (DPSO), charged system search (CSS) and enhanced charged system search (ECSS). The numerical results demonstrate that the MBF algorithm is able to construct very promising results and has merits in solving challenging optimization problems.
A. A. Saberi, D. Sedaghat Shayegan,
Volume 11, Issue 4 (11-2021)
Abstract

Optimization has always been a human concern from ancient times to the present day, also in light of advances in computing equipment and systems, optimization techniques have become increasingly important in different applications. The role of metaheuristic algorithms in optimizing and solving engineering problems is expanding every day, optimization has also had many applications in water engineering. Every year, the effects of climate change and the water crisis deepen and worsen in many parts of the world, and existing water management becomes much more vital and critical. One of the main centers for water management and control dams reservoirs. In this paper, applying the CBO metaheuristic algorithm, the results of optimization in the operation of the Haraz dam reservoir in northern Iran, which has previously been done with FA and GA algorithms and standard operation system (SOP), are reviewed and compared. With the implementation of the CBO algorithm, all results and key outputs such as program runtime, annual water shortages, and vulnerabilities are much better than previous calculations, all the results are mentioned in the text of the article, but for example, the annual water shortage has reached about 38% of the FA algorithm, about 25% of the GA algorithm and about 13% of the SOP method. The numerical results demonstrate that the CBO algorithm has merits in solving challenging optimization problems and using this innovative algorithm can be an important starting point in the operation of dam reservoirs around the world.
S. S. Shahebrahimi, A. Lork, D. Sedaghat Shayegan,
Volume 12, Issue 2 (4-2022)
Abstract

In this study the challenges of managing the civil projects in oil and gas industry over recent years that failed were investigated. For this purpose, the relevant cases and their effectiveness were categorized by analyzing research data obtained from the questionnaire results. The results obtained from the research showed that there is a positive and significant relationship between the project management knowledge and reduction in the challenges. Lack of attention to the project's feasibility study before starting the project, adverse risks at the beginning and end of the projects, proper knowledge of contracts, and the project team's skill are the items that will fail the project if they are not appropriately managed. Since the team's correct design and the key persons of the project and before that feasibility and the necessity of doing it in vital projects in the country are very important and in such a way, the two components studied in this research are derived from the risk management of projects. Considering the importance of this issue as a case study, these cases were investigated in gas pipeline projects in Fars province.
 
D. Sedaghat Shayegan,
Volume 12, Issue 4 (8-2022)
Abstract

In this article, the optimum design of a reinforced concrete solid slab is presented via an efficient hybrid metaheuristic algorithm that is recently developed. This algorithm utilizes the mouth-brooding fish (MBF) algorithm as the main engine and uses the favorable properties of the colliding bodies optimization (CBO) algorithm. The efficiency of this algorithm is compared with mouth-brooding fish (MBF), Neural Dynamic (ND), Cuckoo Search Optimization (COA) and Particle Swarm Optimization (PSO). The cost of the solid slab is considered to be the objective function, and the design is based on the ACI code. The numerical results indicate that this hybrid metaheuristic algorithm can to construct very promising results and has merits in solving challenging optimization problems.
 
A. A. Saberi, H. Ahmadi, D. Sedaghat Shayegan , A. Amirkardoust,
Volume 13, Issue 1 (1-2023)
Abstract

Energy production and consumption play an important role in the domestic and international strategic decisions globally. Monitoring the electric energy consumption is essential for the short- and long-term of sustainable development planned in different countries. One of the advanced methods and/or algorithms applied in this prediction is the meta-heuristic algorithm. The meta-heuristic algorithms can minimize the errors and standard deviations in the data processing. Statistically, there are numerous methods applicable in the uncertainty analysis and in realizing the errors in the datasets, if any. In this article, the Mean Absolute Percentage Error (MAPE) is used in the error’s minimization within the relevant algorithms, and the used dataset is actually relating to the past fifty years, say from 1972 to 2021. For this purpose, the three algorithms such as the Imputation–Regularized Optimization (IRO), Colliding Bodies Optimization (CBO), and Enhanced Colliding Bodies Optimization (ECBO) have been used. Each one of the algorithms has been implemented for the two linear and exponential models. Among this combination of the six models, the linear model of the ECBO meta-heuristic algorithm has yielded the least error. The magnitude of this error is about 3.7%. The predicted energy consumption with the winning model planned for the year 2030 is about 459 terawatt-hours. The important socio-economical parameters are used in predicting the energy consumption, where these parameters include the electricity price, Gross Domestic Product (GDP), previous year's consumption, and also the population. Application of the meta-heuristic algorithms could help the electricity generation industries to calculate the energy consumption of the approaching years with the least error. Researchers should use various algorithms to minimize this error and make the more realistic prediction.
 
D. Sedaghat Shayegan, A. Amirkardoust,
Volume 13, Issue 3 (7-2023)
Abstract

In this article, spectral matching of ground motions is presented via the Mouth Brooding Fish (MBF) algorithm that is recently developed. It is based on mouth brooding fish life cycle. This algorithm utilizes the movements of the mouth brooding fish and their children’s struggle for survival as a pattern to find the best possible answer. For this purpose, wavelet transform is used to decompose the original ground motions to several levels and then each level is multiplied by a variable. Subsequently, this algorithm is employed to determine the variables and wavelet transform modifies the recorded accelerograms until the response spectrum gets close to a specified design spectrum. The performance of this algorithm is investigated through a numerical example and also it is compared with CBO and ECBO algorithms. The numerical results indicate that the MBF algorithm can to construct very promising results and has merits in solving challenging optimization problems.
 
S. S. Shahebrahimi, A. Lork, D. Sedaghat Shayegan, A. A. Kardoust,
Volume 14, Issue 1 (1-2024)
Abstract

One of the important factors in the efficiency of construction operations is the proper replacement construction projects of the construction site layout planning (CSLP). That this would not be possible without oversight of the factors affecting it. Therefore, the study of factors affecting the replacement of construction site layout is considered vital in projects. Different factors are involved in the replacement of CSLP, which examine the economic dimension and the effects of changing costs and time during work. Due to the complexity of the subject, it is solved using hyper-innovative algorithms. This research is a linear programming model for optimizing the layout of equipment for Launcher/Receiver (L/R) stations. Due to the complexity of the problem, the invasive weed algorithm was used to achieve an optimal response. The goal is to minimize the total costs associated with transportation, relocation and relocation, and changes during implementation. The results of the calculations and output of the algorithm showed the variation of the answer in the optimal layout of the CSLP, which was obtained at the lowest distance and the most optimal mode. The results were presented in a similar scenario in the projects.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb