Showing 76 results for Par
H. Fathnejat, P. Torkzadeh, E. Salajegheh, R. Ghiasi,
Volume 4, Issue 4 (11-2014)
Abstract
Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the MSEBI of structural elements is evaluated using properly trained cascade feed-forward neural network (CFNN). In order to achieve an appropriate artificial neural network (ANN) model for MSEBI evaluation, a set of feed-forward artificial neural networks which are more suitable for non-linear approximation, are trained. All of these neural networks are tested and the results demonstrate that the CFNN model with log-sigmoid hidden layer transfer function is the most suitable ANN model among these selected ANNs. Moreover, to increase damage severity detection accuracy, the optimization process of damage severity detection is carried out by particle swarm optimization (PSO) whose cost function is constructed based on MSEBI. To validate the proposed solution method, two structural examples with different number of members are presented. The results indicate that after determining the damage location, the proposed solution method for damage severity detection leads to significant reduction of computational time compared to finite element method. Furthermore, engaging PSO algorithm by efficient approximation mechanism of finite element (FE) model, maintains the acceptable accuracy of damage severity detection.
Z. Hajishafee , S.h. Mirmohammadi , S.r. Hejazi,
Volume 5, Issue 1 (1-2015)
Abstract
The overall cost of companies dealing with the distribution tasks is considerably affected by the way that distributing vehicles are procured. In this paper, a more practical version of capacitated vehicle routing problem (CVRP) in which the decision of purchase or hire of vehicles is simultaneously considered is investigated. In CVRP model capacitated vehicles start from a single depot simultaneously and deliver the demanded items of several costumers with known demands where each costumer must be met once. Since the optimal vehicle procurement cost is a function of total distance it traverses during the planning horizon, the model is modified in a way that the decision of purchasing or hiring of each vehicle is made simultaneously. The problem is formulated as a mixed integer programming (MIP) model in which the sum of net present value (NPV) of procurement and traveling costs is minimized. To solve the problem, a hybrid electromagnetism and parallel simulated annealing (PSA-EM) algorithm and a Shuffled Frog Leaping Algorithm (SFLA) are presented. Finally, the presented methods are compared experimentally. Although in some cases the SFLA algorithm yields better solutions, experimental results show the competitiveness of PSA-EM algorithm from the computational time and performance points of view.
A. Kaveh , M. Ilchi Ghazaan,
Volume 5, Issue 1 (1-2015)
Abstract
This paper presents the application of metaheuristic methods to the minimum crossing number problem for the first time. These algorithms including particle swarm optimization, improved ray optimization, colliding bodies optimization and enhanced colliding bodies optimization. For each method, a pseudo code is provided. The crossing number problem is NP-hard and has important applications in engineering. The proposed algorithms are tested on six complete graphs and eight complete bipartite graphs and their results are compared with some existing methods.
J. C. Liang, L. J. Li, N. He,
Volume 5, Issue 1 (1-2015)
Abstract
A multi-objective heuristic particle swarm optimiser (MOHPSO) based on Pareto multi-objective theory is proposed to solve multi-objective optimality problems. The optimality objectives are the roof displacement and structure weight. Two types of structure are analysed in this paper, a truss structure and a framework structure. Performance-based seismic analysis, such as classical and modal pushover analysis, is carried out for the structures. Four optimality algorithms, namely, NSGA-II, MOPSO, MGSO, and MOHPSO, were used for structural optimisation to compare the effectiveness of the algorithms. The calculation results indicate that MOHPSO outperformed the other algorithms in terms of solution stability, universality, and consistency of the distribution of the Pareto front and the ability to consider constraints. The population can converge to the true Pareto front in the latter generations, which indicates that MOHPSO is effective for engineering multi-objective optimality problems.
B. Dizangian , M. R Ghasemi,
Volume 5, Issue 2 (3-2015)
Abstract
A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulation (MCs) is embedded into a design optimization procedure by a modular double loop approach, which the self-adaptive version of particle swarm optimization method is introduced as an optimization technique. Double loop method has the advantage of being simple in concepts and easy to implement. First, we study the efficiency of self-adaptive PSO algorithm inorder to solve the optimization problem in reliability analysis and then compare the results with the Monte Carlo simulation. While computationally significantly more expensive than deterministic design optimization, the examples illustrate the importance of accounting for uncertainties and the need for regarding reliability-based optimization methods and also, should encourage the use of PSO as the best of evolutionary optimization methods to more such reliability-based optimization problems.
A. Csébfalvi,
Volume 5, Issue 4 (7-2015)
Abstract
This study has been inspired by the paper "An efficient 3D topology optimization code written in MATLAB” written by Liu and Tovar (2014) demonstrating that SIMP-based three-dimensional (3D) topology optimization of continuum structures can be implemented in 169 lines of MATLAB code. Based on the above paper, we show here that, by simple and easy-to-understand modifications we get a few lines longer code, which is able to solve robust topology optimization problems with uncertain load directions. In the presented worst load direction oriented approach, the varying load directions are handled by quadratic constrains, which describe spherical regions about the nominal loads. The result of the optimization is a robust compliance-minimal volume constrained design, which is invariant to the investigated directional uncertainty. The key element of the robustification is a worstload-direction searching process, which is formulated as a small quadratic programming problem with quadratic constraints. The presented approach is a 3D extension of the robust approach originally developed by Csébfalvi (2014) for 2D continuum structures. In order to demonstrate the viability and efficiency of the extension, we present the model and algorithm with detailed benchmark results for robust topology optimization of 3D continuum structures. It will be demonstrated that the computational cost of the robustification is comparable with its deterministic equivalent because its central element is a standard 3D deterministic multi-load structure optimization problem and the worst-loaddirection searching process is formulated as a significantly smaller quadratically constrained quadratic programming problem, which can be solved efficiently by several different ways.
G. Ghodrati Amiri, A. Zare Hosseinzadeh, S. A. Seyed Razzaghi,
Volume 5, Issue 4 (7-2015)
Abstract
This paper presents a new model updating approach for structural damage localization and quantification. Based on the Modal Assurance Criterion (MAC), a new damage-sensitive cost function is introduced by employing the main diagonal and anti-diagonal members of the calculated Generalized Flexibility Matrix (GFM) for the monitored structure and its analytical model. Then, the cost function is solved by Democratic Particle Swarm Optimization (DPSO) algorithm to achieve the optimal solution of the problem lead to damage identification. DPSO is a modified version of standard PSO algorithm which is developed for presenting a fast speed evolutionary optimization strategy. The applicability of the method is demonstrated by studying three numerical examples which consists of a ten-story shear frame, a plane steel truss and a plane steel frame. Several challenges such as the efficiency of the DPSO algorithm in comparison with other evolutionary optimization approaches for solving the inverse problem, impacts of random noise in input data on the reliability of the presented method, and effects of the number of available modal data for damage identification, are studied. The obtained results reveal good, robust and stable performance of the presented method for structural damage identification using only the first several modes’ data.
M. H. Ranginkaman, A. Haghighi, H. M. Vali Samani,
Volume 6, Issue 1 (1-2016)
Abstract
Inverse Transient Analysis (ITA) is a powerful approach for leak detection of pipelines. When the pipe transient flow is analyzed in frequency domain the ITA is called Inverse Frequency Response Analysis (IFRA). To implement an IFRA for leak detection, a transient state is initiated in the pipe by fast closure of the downstream end valve. Then, the pressure time history at the valve location is measured. Using the Fast Fourier Transform (FFT) the measured signal is transferred into the frequency domain. Besides, using the transfer matrix method, a frequency response analysis model for the pipeline is developed as a function of the leak parameters including the number, location and size of leaks. This model predicts the frequency responses of the pipe in return for any random set of leak parameters. Then, a nonlinear inverse problem is defined to minimize the discrepancies between the observed and predicted responses at the valve location. To find the pipeline leaks the method of Particle Swarm Optimization (PSO) is coupled to the transient analysis model while, the leak parameters are the optimization decision variables. The model is successfully applied against an example pipeline and in both terms of efficiency and reliability the results are satisfactory.
M. J. Esfandiary, S. Sheikholarefin, H. A. Rahimi Bondarabadi,
Volume 6, Issue 2 (6-2016)
Abstract
Structural design optimization usually deals with multiple conflicting objectives to obtain the minimum construction cost, minimum weight, and maximum safety of the final design. Therefore, finding the optimum design is hard and time-consuming for such problems. In this paper, we borrow the basic concept of multi-criterion decision-making and combine it with Particle Swarm Optimization (PSO) to develop an algorithm for accelerating convergence toward the optimum solution in structural multi-objective optimization scenarios. The effectiveness of the proposed algorithm was illustrated in some benchmark reinforced concrete (RC) optimization problems. The main goal was to minimize the cost or weight of structures while satisfying all design requirements imposed by design codes. The results confirm the ability of the proposed algorithm to efficiently find optimal solutions for structural optimization problems.
H. Bahadori , M. S. Momeni,
Volume 6, Issue 3 (9-2016)
Abstract
Shear wave velocity (Vs) is known as one of the fundamental material parameters which is useful in dynamic analysis. It is especially used to determine the dynamic shear modulus of the soil layers. Nowadays, several empirical equations have been presented to estimate the shear wave velocity based on the results from Standard Penetration Test (SPT) and soil type. Most of these equations result in different estimation of Vs for the same soils. In some cases a divergence of up to 100% has been reported. In the following study, having used the field study results of Urmia City and Artificial Neural Networks, a new correlation between Vs and several simple geotechnical parameters (i.e. Modified SPT value number (N60), Effective overburden stress, percentage of passing from Sieve #200 (Fc), plastic modulus (PI) and mean grain size (d50)) is presented. Using sensitivity analysis it is been shown that the effect of PI in Vs prediction is more than that of N60 in over consolidated clays. It is also observed that Fc has a high influence on evaluation of shear wave velocity of silty soils.
M. Khatibinia, H. Gholami, S. F. Labbafi,
Volume 6, Issue 4 (10-2016)
Abstract
Tuned mass dampers (TMDs) are as a efficient control tool in order to reduce undesired vibrations of tall buildings and large–span bridges against lateral loads such as wind and earthquake. Although many researchers has been widely investigated TMD systems due to its simplicity and application, the optimization of parameters and placement of TMD are challenging tasks. Furthermore, ignoring the effects of soil–structure interaction (SSI) may lead to unrealistic desig of structure and its dampers. Hence, the effects of SSI should be considered in the design of TMD. Therefore, the main aim of this study is to optimize parameters of TMD subjected to earthquake and considering the effects of SSI. In this regard, the parameters of TMD including mass, stiffness and damping optimization are considered as the variables of optimization. The maximum absolute displacement and acceleration of structure are also simultaneously selected as objective functions. The multi –objective particle swarm optimization (MOPSO) algorithm is adopted to find the optimal parameters of TMD. In this study, the Lagrangian method is utilized for obtaining the equations of motion for SSI system, and the time domain analysis is implemented based on Newmark method. In order to investigate the effects of SSI in the optimal design of TMD, a 40 storey shear building with a TMD subjected to the El–Centro earthquake is considered. The numerical results show that the SSI effects have the significant influence on the optimum parameters of TMD.
A. Khajeh, M. R. Ghasemi, H. Ghohani Arab,
Volume 7, Issue 2 (3-2017)
Abstract
This paper combines particle swarm optimization, grid search method and univariate method as a general optimization approach for any type of problems emphasizing on optimum design of steel frame structures. The new algorithm is denoted as the GSU-PSO. This method attempts to decrease the search space and only searches the space near the optimum point. To achieve this aim, the whole search space is divided into a series of grids by applying the grid search method. By using a method derived from the univariate method, the variables of the best particle change values. Finally, by considering an interval adjustment to the variables and generating particles randomly in new intervals, the particle swarm optimization allows us to swiftly find the optimum solution. This method causes converge to the optimum solution more rapidly and with less number of analyses involved. The proposed GSU-PSO algorithm is tested on several steel frames from the literature. The algorithm is implemented by interfacing MATLAB mathematical software and SAP2000 structural analysis code. The results indicated that this method has a higher convergence speed towards the optimal solution compared to the conventional and some well-known meta-heuristic algorithms. In comparison to the PSO algorithm, the proposed method required around 45% of the total number of analyses recorded and improved marginally the accuracy of solutions.
A. Kaveh, M. Ilchi Ghazaan,
Volume 7, Issue 3 (7-2017)
Abstract
In this paper, MATLAB code for a recently developed meta-heuristic methodology, the vibrating particles system (VPS) algorithm, is presented. The VPS is a population-based algorithm which simulates a free vibration of single degree of freedom systems with viscous damping. The particles gradually approach to their equilibrium positions that are achieved from current population and historically best position. Two truss towers with 942 and 2386 elements are examined for the validity of the present algorithm; however, the performance VPS has already been proven through truss and frame design optimization problems.
M. Feizbakhsh , M. Khatibinia,
Volume 7, Issue 3 (7-2017)
Abstract
This study investigates the prediction model of compressive strength of self–compacting concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS called PSOPC–ANFIS. Their performances are comparatively evaluated in order to find the best prediction model. In this study, SCC mixtures containing different percentage of nano SiO2 (NS), nano–TiO2 (NT), nano–Al2O3 (NA), also binary and ternary combining of these nanoparticles are selected. The results indicate that the PSOPC–ANFIS approach in comparison with the ANFIS and ANN techniques obtains an improvement in term of generalization and predictive accuracy. Although, the ANFIS and ANN techniques are a suitable model for this purpose, PSO integrated with the ANFIS is a flexible and accurate method due tothe stronger global search ability of the PSOPC algorithm.
A. Kaveh, Y. Vazirinia,
Volume 7, Issue 3 (7-2017)
Abstract
Tower cranes are major and expensive equipment that are extensively used at building construction projects and harbors for lifting heavy objects to demand points. The tower crane locating problem to position a tower crane and supply points in a building construction site for supplying all requests in minimum time, has been raised from more than twenty years ago. This problem has already been solved by linear programming, but meta-heuristic methods spend less time to solving the problem. Hence, in this paper three newly developed meta-heuristic algorithms called CBO, ECBO, and VPS have been used to solve the tower crane locating problem. Three scenarios are studied to show the applicability and performance of these meta-heuristics.
S. Alimollaie, S. Shojaee,
Volume 7, Issue 4 (10-2017)
Abstract
Optimization techniques can be efficiently utilized to achieve an optimal shape for arch dams. This optimal design can consider the conditions of the economy and safety simultaneously. The main aim is to present an applicable and practical model and suggest an algorithm for optimization of concrete arch dams to enhance their seismic performance. To achieve this purpose, a preliminary optimization is accomplished using PSO procedure in the first stage. Capabilities of Ansys Parametric Design Language (APDL) are applied for modeling the Dam-Foundation-Reservoir system. In the second stage with training the neural network, Group Method of Data Handling (GMDH) and replacement of Ansys analyst, optimal results have been achieved with the lowest error and less number of iteration respectively. Then a real world double-arch dam is presented to demonstrate the effectiveness and practicality of the PSO-GMDH. The numerical results reveal that the proposed method called PSO-GMDH provides faster rate and high searching accuracy to achieve the optimal shape of arch concrete dams and the modification and optimization of shape have a quite important role in increasing the safety against dynamic design loads.
S. A. Hosseini, A. Zolghadr,
Volume 7, Issue 4 (10-2017)
Abstract
Offshore jacket-type towers are steel structures designed and constructed in marine environments for various purposes such as oil exploration and exploitation units, oceanographic research, and undersea testing. In this paper a newly developed meta-heuristic algorithm, namely Cyclical Parthenogenesis Algorithm (CPA), is utilized for sizing optimization of a jacket-type offshore structure. The algorithm is based on some key aspects of the lives of aphids as one of the highly successful organisms, especially their ability to reproduce with and without mating. The optimal design procedure aims to obtain a minimum weight jacket-type structure subjected to API-RP 2A-WSD specifications. SAP2000 and its Open Application Programming Interface (OAPI) feature are utilized to model the jacket-type structure and the corresponding loading. The results of the optimization process are then compared with those of Particle Swarm Optimization (PSO) and its democratic version (DPSO).
M. Fadavi Amiri, S. A. Soleimani Eyvari, H. Hasanpoor, M. Shamekhi Amiri,
Volume 8, Issue 1 (1-2018)
Abstract
For seismic resistant design of critical structures, a dynamic analysis, based on either response spectrum or time history is frequently required. Due to the lack of recorded data and randomness of earthquake ground motion that might be experienced by the structure under probable future earthquakes, it is usually difficult to obtain recorded data which fit the necessary parameters (e.g. soil type, source mechanism, focal depth, etc.) well. In this paper, a new method for generating artificial earthquake accelerograms from the target earthquake spectrum is suggested based on the use of wavelet analysis and artificial neural networks. This procedure applies the learning capabilities of neural network to expand the knowledge of inverse mapping from the response spectrum to the earthquake accelerogram. At the first step, wavelet analysis is utilized to decompose earthquake accelerogram into several levels, which each of them covers a special range of frequencies. Then for every level, a neural network is trained to learn the relationship between the response spectrum and wavelet coefficients. Finally, the generated accelerogram using inverse discrete wavelet transform is obtained. In order to make earthquake signals compact in the proposed method, the multiplication sample of LPC (Linear predictor coefficients) is used. Some examples are presented to demonstrate the effectiveness of the proposed method.
M. Shahrouzi, H. Farah-Abadi,
Volume 8, Issue 1 (1-2018)
Abstract
The most recent approaches of multi-objective optimization constitute application of meta-heuristic algorithms for which, parameter tuning is still a challenge. The present work hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main control parameters into especial fuzzy sets that are constructed based on a number of prescribed facts. Such parameter-less particle swarm optimization is employed as the core of a multi-objective optimization framework with a repository to save Pareto solutions. The proposed method is tested on a variety of benchmark functions and structural sizing examples. Results show that it can provide Pareto front by lower computational time in competition with some other popular multi-objective algorithms.
A. Kaveh, S. R. Hoseini Vaez, P. Hosseini,
Volume 8, Issue 3 (10-2018)
Abstract
Vibrating particles system (VPS) is a new meta-heuristic algorithm based on the free vibration of freedom system’ single degree with viscous damping. In this algorithm, each agent gradually approach to its equilibrium position; new agents are generated according to current agents and a historically best position. Enhanced vibrating particles system (EVPS) employs a new alternative procedure to enhance the performance of the VPS algorithm. Two different truss structures are investigated to demonstrate the performance of the VPS and EVPS weight optimization of structures.