Showing 84 results for Kaveh
A. Kaveh , M. Ilchi Ghazaan,
Volume 5, Issue 2 (3-2015)
Abstract
The failure probability of the structures is one of the challenging problems in structural engineering. To obtain the reliability index introduced by Hasofer and Lind, one needs to solve a nonlinear equality constrained optimization problem. In this study, four of the most recent metaheuristic algorithms are utilized for finding the design point and the failure probability of problems with continuous random variables. These algorithms consist of Improved Ray Optimization, Democratic Particle Swarm Optimization, Colliding Bodies Optimization, and Enhanced Colliding Bodies Optimization. The performance of these algorithms is tested on nineteen engineering optimization problems
S. Talatahariand , A. Kaveh,
Volume 5, Issue 2 (3-2015)
Abstract
Deterring the optimum design of large-scale structures is a difficult task. Great number of design variables, largeness of the search space and controlling great number of design constraints are major preventive factors in performing optimum design of large-scale truss structures in a reasonable time. Meta-heuristic algorithms are known as one of the useful tools to deal with these problems. This paper presents an improved bat algorithm for optimizing large-scale structures. The capability of the algorithm is examined by comparing the resulting design parameters and structural weight with those of other methods from
literature.
R. Sheikholeslami , A. Kaveh,
Volume 5, Issue 3 (8-2015)
Abstract
The main functional purpose of a water distribution network is to transport water from a source to several domestic and industrial units while at the same time satisfying various requirements on hydraulic response. All the water distribution networks perform two basic operations: firstly the water network needs to deliver adequate amounts of water to meet specific requirements, and secondly the water network needs to be reliable therefore, the required amount of water needs to be continuously available 24 hours a day and 365 days per year. Due to the inevitable failures of some components such as pump stations, reservoirs and/or pipelines in a large-scale water distribution network, in designing a reliable network, the topological structure with low vulnerability must be achieved. Consequently, the study of connectivity, which is the key graph-theoretical notion, becomes crucial. This paper highlights some fundamental concepts from graph theory for vulnerability assessment of water distribution networks, addresses the mathematical properties of the link and node-deletion problems, and outlines some well-established results on the deterministic measures to assess the fault tolerance of networks.
A. Kaveh, F. Shokohi,
Volume 5, Issue 3 (8-2015)
Abstract
The main object of this research is to optimize an end-filled castellated beam. In order to support high shear forces close to the connections, sometimes it becomes necessary to fill certain holes in web opening beam. This is done by inserting steel plates and welding from both sides. Optimization of these beams is carried out using three meta-heuristic methods involves CSS, CBO, and CBO-PSO algorithms. To compare the performance of these algorithms, the minimum cost of the beam is taken as the design objective function. Also, in this study, two common types of laterally supported castellated beams are considered as design problems: beams with hexagonal openings and beams with circular openings. A number of design examples are considered to solve in this case. Comparison of the optimal solution of these methods demonstrates that the hexagonal beams have less cost than cellular beams. It is observed that optimization results obtained by the CBO-PSO for more design examples have less cost in comparison to the results of the other methods.
A. Kaveh, P. Zakian,
Volume 5, Issue 4 (7-2015)
Abstract
This study presents shape optimization of a gravity dam imposing stability and principal stress constraints. A gravity dam is a large scale hydraulic structure consisting of huge amount of concrete material. Hence, an optimum design gives a cost-benefit structure due to the fact that small changes in shape of dam cross-section leads to large saving of concrete volume. Three recently developed meta-heuristics are utilized for optimizing the structure. These algorithms are charged system search (CSS), colliding bodies optimization (CBO) and its enhanced edition (ECBO). This article also provides useful formulations for stability analysis of gravity dams which can be extended to further researches.
A. Kaveh, M.h. Ghafari,
Volume 5, Issue 4 (7-2015)
Abstract
In rigid plastic analysis one of the most widely applicable methods that is based on the minimum principle, is the combination of elementary mechanisms which uses the upper bound theorem. In this method a mechanism is searched which corresponds to the smallest load factor. Mathematical programming can be used to optimize this search process for simple frames, and meta-heuristic algorithms are the best choice for larger frame structures.
In this paper, the Colliding Bodies Optimization (CBO) and its enhanced variant (ECBO) are employed to optimize the process of finding an upper bound for the collapse load factor of the planar frames. The efficiency of these algorithms is compared to that of the Particle Swarm Optimization (PSO) algorithm through four numerical examples form multi-bay multi-story frames and pitched roof frames.
A. Kaveh, P. Asadi,
Volume 6, Issue 1 (1-2016)
Abstract
Grillages are widely used in various structures. In this research, the Colliding Bodies Optimization (CBO) and Enhanced Colliding Bodies Optimization (ECBO) algorithms are used to obtain the optimum design of irregular grillage systems. The purpose of this research is to minimize the weight of the structure while satisfying the design constraints. The design variables are considered to be the cross-sectional properties of the beams and the design constraints are employed from LRFD-AISC. In addition, optimum design of grillages is performed for two cases: (i) without considering the warping effect, and (ii) with considering the warping effect. Also, several examples are presented to show the effect of different spacing and various boundary conditions. Finally, the results show that warping effect, beam spacing and boundary conditions have significant effects on the optimum design of grillages.
M. A. Shayanfar, A. Kaveh, O. Eghlidos , B. Mirzaei,
Volume 6, Issue 2 (6-2016)
Abstract
In this paper, a method is presented for damage detection of bridges using the Enhanced Colliding Bodies Optimization (ECBO) utilizing time-domain responses. The finite element modeling of the structure is based on the equation of motion under the moving load, and the flexural stiffness of the structure is determined by the acceleration responses obtained via sensors placed in different places. Damage detection problem presented in this research is an inverse problem, which is optimized by the ECBO algorithm, and the damages in the structures are fully detected. Furthermore, for simulating the real situation, the effect of measured noises is considered on the structure, to obtain more accurate results.
A. Kaveh , M. Ghobadi,
Volume 6, Issue 3 (9-2016)
Abstract
The p-median problem is one of the discrete optimization problem in location theory which aims to satisfy total demand with minimum cost. A high-level algorithmic approach can be specialized to solve optimization problem. In recent years, meta-heuristic methods have been applied to support the solution of Combinatorial Optimization Problems (COP). Collision Bodies Optimization algorithm (CBO) and Enhanced Colliding Bodies Optimization (ECBO) are two recently developed continuous optimization algorithms which have been applied to some structural optimization problems. The main goal of this paper is to provide a useful comparison between capabilities of these two algorithms in solving p-median problems. Comparison of the obtained results shows the validity and robustness of these two new meta-heuristic algorithms for p-median problem.
A. Kaveh, A. Zolghadr,
Volume 6, Issue 4 (10-2016)
Abstract
This paper presents a novel population-based meta-heuristic algorithm inspired by the game of tug of war. Utilizing a sport metaphor the algorithm, denoted as Tug of War Optimization (TWO), considers each candidate solution as a team participating in a series of rope pulling competitions. The teams exert pulling forces on each other based on the quality of the solutions they represent. The competing teams move to their new positions according to Newtonian laws of mechanics. Unlike many other meta-heuristic methods, the algorithm is formulated in such a way that considers the qualities of both of the interacting solutions. TWO is applicable to global optimization of discontinuous, multimodal, non-smooth, and non-convex functions. Viability of the proposed method is examined using some benchmark mathematical functions and engineering design problems. The numerical results indicate the efficiency of the proposed algorithm compared to some other methods available in literature.
A. Kaveh, F. Shokohi , B. Ahmadi,
Volume 7, Issue 2 (3-2017)
Abstract
In this study, the recently developed method, Tug of War Optimization (TWO), is employed for simultaneous analysis, design and optimization of Water Distribution Systems (WDSs). In this method, analysis procedure is carried out using Tug of War Optimization algorithm. Design and cost optimization of WDSs are performed simultaneous with analysis process using an objective function in order to satisfying the analysis criteria, design constraints and cost optimization. A number of practical examples of WDSs are selected to demonstrate the efficiency of the presented algorithm. The findings of this study clearly signify the efficiency of the TWO algorithm in reducing the water distribution networks construction cost.
A. Kaveh, M. Ilchi Ghazaan,
Volume 7, Issue 3 (7-2017)
Abstract
In this paper, MATLAB code for a recently developed meta-heuristic methodology, the vibrating particles system (VPS) algorithm, is presented. The VPS is a population-based algorithm which simulates a free vibration of single degree of freedom systems with viscous damping. The particles gradually approach to their equilibrium positions that are achieved from current population and historically best position. Two truss towers with 942 and 2386 elements are examined for the validity of the present algorithm; however, the performance VPS has already been proven through truss and frame design optimization problems.
A. Kaveh, Y. Vazirinia,
Volume 7, Issue 3 (7-2017)
Abstract
Tower cranes are major and expensive equipment that are extensively used at building construction projects and harbors for lifting heavy objects to demand points. The tower crane locating problem to position a tower crane and supply points in a building construction site for supplying all requests in minimum time, has been raised from more than twenty years ago. This problem has already been solved by linear programming, but meta-heuristic methods spend less time to solving the problem. Hence, in this paper three newly developed meta-heuristic algorithms called CBO, ECBO, and VPS have been used to solve the tower crane locating problem. Three scenarios are studied to show the applicability and performance of these meta-heuristics.
A. Kaveh, A. Dadras,
Volume 7, Issue 4 (10-2017)
Abstract
In this paper a Guided Tabu Search (GTS) is utilized for optimal nodal ordering of finite element models (FEMs) leading to small profile for the stiffness matrices of the models. The search strategy is accelerated and a graph-theoretical approach is used as guidance. The method is evaluated by minimization of graph matrices pattern equivalent to stiffness matrices of finite element models. Comparison of the results with those of some powerful methods, confirms the robustness of the algorithm.
S.m.h. Sharifi, M. Kaveh, H. Saeidi Googarchin,
Volume 7, Issue 4 (10-2017)
Abstract
Offshore pipelines are an effective tool for transportation of oil and gas which are usually assembled by the use of girth welds. Since flaws may naturally exist at such welds, fracture assessment of girth welded offshore pipelines is substantial. Current fracture assessment procedures like BS 7910 consider identical material properties for the weld and the base metals. However the strength difference between weld and base materials has significant effect on fracture assessment results. This effect is magnified greatly for pipelines which are operated in deep waters and are subjected to large plastic loads. In this paper 3D nonlinear elastic-plastic finite element analyses using the ABAQUS software are performed in order to investigate the effect of weld mismatching at various crack geometries on fracture assessment of pipeline’s girth weld. It is noteworthy that such a quantitative study on the effect of weld mismatching condition at different crack geometries on ECA analysis has not been performed so far. Based on simulation performed, a new optimized formula is proposed for fracture analysis of girth welded pipeline with surface cracks considering the effect of weld mismatching conditions at plastic strains. The results show that comparison of proposed formula results with those available experimental data reveals a great agreement. Furthermore, it is observed that the effect of strength difference between the base and the weld materials is insignificant for short cracks whereas mismatching plays a more dominating role in long cracks. Also, with increasing the crack heights the effect of weld mismatching raises meaningfully. In addition, ECA analysis results with and without weld mismatching effect are compared.
A. Kaveh, S. M. Hamze-Ziabari, T. Bakhshpoori,
Volume 8, Issue 1 (1-2018)
Abstract
In the present study, two new hybrid approaches are proposed for predicting peak ground acceleration (PGA) parameter. The proposed approaches are based on the combinations of Adaptive Neuro-Fuzzy System (ANFIS) with Genetic Algorithm (GA), and with Particle Swarm Optimization (PSO). In these approaches, the PSO and GA algorithms are employed to enhance the accuracy of ANFIS model. To develop hybrid models, a comprehensive database from Pacific Earthquake Engineering Research Center (PEER) are used to train and test the proposed models. Earthquake magnitude, earthquake source to site distance, average shear-wave velocity, and faulting mechanisms are used as predictive parameters. The performances of developed hybrid models (PSO-ANFIS-PSO and GA-ANFIS-GA) are compared with the ANFIS model and also the most common soft computing approaches available in the literature. According to the obtained results, three developed models can be effectively used to predict the PGA parameter, but the comparison of models shows that the PSO-ANFIS–PSO model provides better results.
A. Kaveh, S. M. Hamze-Ziabari, T. Bakhshpoori,
Volume 8, Issue 2 (8-2018)
Abstract
In the present study, the multivariate adaptive regression splines (MARS) technique is employed to estimate the drying shrinkage of concrete. To this purpose, a very big database (RILEM Data Bank) from different experimental studies is used. Several effective parameters such as the age of onset of shrinkage measurement, age at start of drying, the ratio of the volume of the sample on its drying surface, relative humidity, cement content, the ratio between water and cement contents, the ratio of sand on total aggregate, average compressive strength at 28 days, and modulus of elasticity at 28 days are included in the developing process of MARS model. The performance of MARS model is compared with several codes of practice including ACI, B3, CEB MC90-99, and GL2000. The results confirmed the superior capability of developed MARS model over existing design codes. Furthermore, the robustness of the developed model is also verified through sensitivity and parametric analyses.
A. Kaveh, A. Dadras,
Volume 8, Issue 2 (8-2018)
Abstract
In this paper the performance of four well-known metaheuristics consisting of Artificial Bee Colony (ABC), Biogeographic Based Optimization (BBO), Harmony Search (HS) and Teaching Learning Based Optimization (TLBO) are investigated on optimal domain decomposition for parallel computing. A clique graph is used for transforming the connectivity of a finite element model (FEM) into that of the corresponding graph, and k-median approach is employed. The performance of these methods is investigated through four FE models with different topology and number of meshes. A comparison of the numerical results using different algorithms indicates, in most cases the BBO is capable of performing better or identical using less time with equal computational effort.
A. Kaveh, S. R. Hoseini Vaez, P. Hosseini,
Volume 8, Issue 3 (10-2018)
Abstract
Vibrating particles system (VPS) is a new meta-heuristic algorithm based on the free vibration of freedom system’ single degree with viscous damping. In this algorithm, each agent gradually approach to its equilibrium position; new agents are generated according to current agents and a historically best position. Enhanced vibrating particles system (EVPS) employs a new alternative procedure to enhance the performance of the VPS algorithm. Two different truss structures are investigated to demonstrate the performance of the VPS and EVPS weight optimization of structures.
A. Kaveh, S. Sabeti,
Volume 9, Issue 1 (1-2019)
Abstract
Structural optimization of offshore wind turbine structures has become an important issue in the past years due to the noticeable developments in offshore wind industry. However, considering the offshore wind turbines’ size and environment, this task is outstandingly difficult. To overcome this barrier, in this paper, a metaheuristic algorithm called Enhanced Colliding Bodies Optimization (ECBO) is utilized to investigate the optimal design of jacket supporting structures for offshore wind turbines when a number of structural constraints, including a frequency constraint, are considered. The algorithm is validated using a design example. The OC4 reference jacket, which has been widely referenced in offshore wind industry, is the considered design example in this paper. The whole steps of this research, including loading, analysis, design, and optimization of the structure, are coded in MATLAB. Both Ultimate Limit States (ULS) and frequency constraints are considered as design constraints in this paper. Huge weight reduction is observed during this optimization problem, indicating the efficiency of the ECBO algorithm and its application in the optimization of offshore wind turbine structures.