Showing 84 results for Kaveh
A. Kaveh, A. Eskandari,
Volume 11, Issue 1 (1-2021)
Abstract
The artificial neural network is such a model of biological neural networks containing some of their characteristics and being a member of intelligent dynamic systems. The purpose of applying ANN in civil engineering is their efficiency in some problems that do not have a specific solution or their solution would be very time-consuming. In this study, four different neural networks including FeedForward BackPropagation (FFBP), Radial Basis Function (RBF), Extended Radial Basis Function (ERBF), and Generalized Regression Neural Network (GRNN) have been efficiently trained to analyze large-scale space structures specifically double-layer barrel vaults focusing on their maximum element stresses. To investigate the efficiency of the neural networks, an example has been done and their corresponding results have been compared with their exact amounts obtained by the numerical solution.
A. Kaveh, S. R. Hoseini Vaez, P. Hosseini, H. Fathi,
Volume 11, Issue 2 (5-2021)
Abstract
A modified dolphin monitoring (MDM) is used to augment the efficiency of particle swarm optimization (PSO) and enhanced vibrating particle system (EVPS) for the numerical crack identification problems in plate structures. The extended finite element method (XFEM) is employed for modeling the fracture. The forward problem is untangled by some cycle loading phase via dynamic XFEM. Furthermore, the inverse problem is solved and compared via two PSO and EVPS algorithms. All the problems are also dissolved by means of fine and coarse meshing. The results illustrate that the function of XFEM-PSO-MDM and XFEM-EVPS-MDM is superior to XFEM-PSO and XFEM-EVPS methods. The algorithms coupled via MDM offer a higher convergence rate with more reliable results. The MDM is found to be a suitable tool which can promotes the ability of the algorithms in achieving the optimum solutions.
A. Kaveh, K. Biabani Hamedani, M. Kamalinejad, A. Joudaki,
Volume 11, Issue 2 (5-2021)
Abstract
Jellyfish Search (JS) is a recently developed population-based metaheuristic inspired by the food-finding behavior of jellyfish in the ocean. The purpose of this paper is to propose a quantum-based Jellyfish Search algorithm, named Quantum JS (QJS), for solving structural optimization problems. Compared to the classical JS, three main improvements are made in the proposed QJS: (1) a quantum-based update rule is adopted to encourage the diversification in the search space, (2) a new boundary handling mechanism is used to avoid getting trapped in local optima, and (3) modifications of the time control mechanism are added to strike a better balance between global and local searches. The proposed QJS is applied to solve frequency-constrained large-scale cyclic symmetric dome optimization problems. To the best of our knowledge, this is the first time that JS is applied in frequency-constrained optimization problems. An efficient eigensolution method for free vibration analysis of rotationally repetitive structures is employed to perform structural analyses required in the optimization process. The efficient eigensolution method leads to a considerable saving in computational time as compared to the existing classical eigensolution method. Numerical results confirm that the proposed QJS considerably outperforms the classical JS and has superior or comparable performance to other state-of-the-art optimization algorithms. Moreover, it is shown that the present eigensolution method significantly reduces the required computational time of the optimization process compared to the classical eigensolution method.
A. Kaveh, K. Biabani Hamedani, M. Kamalinejad,
Volume 11, Issue 4 (11-2021)
Abstract
The arithmetic optimization algorithm (AOA) is a recently developed metaheuristic optimization algorithm that simulates the distribution characteristics of the four basic arithmetic operations (i.e., addition, subtraction, multiplication, and division) and has been successfully applied to solve some optimization problems. However, the AOA suffers from poor exploration and prematurely converges to non-optimal solutions, especially when dealing with multi-dimensional optimization problems. More recently, in order to overcome the shortcomings of the original AOA, an improved version of AOA, named IAOA, has been proposed and successfully applied to discrete structural optimization problems. Compared to the original AOA, two major improvements have been made in IAOA: (1) The original formulation of the AOA is modified to enhance the exploration and exploitation capabilities; (2) The IAOA requires fewer algorithm-specific parameters compared with the original AOA, which makes it easy to be implemented. In this paper, IAOA is applied to the optimal design of large-scale dome-like truss structures with multiple frequency constraints. To the best of our knowledge, this is the first time that IAOA is applied to structural optimization problems with frequency constraints. Three benchmark dome-shaped truss optimization problems with frequency constraints are investigated to demonstrate the efficiency and robustness of the IAOA. Experimental results indicate that IAOA significantly outperforms the original AOA and achieves results comparable or superior to other state-of-the-art algorithms.
A. Kaveh, L. Mottaghi, A. Izadifard,
Volume 12, Issue 1 (1-2022)
Abstract
In this paper the parametric study is carried out to investigate the effect of number of cells in optimal cost of the non-prismatic reinforced concrete (RC) box girder bridges. The variables are geometry of cross section, tapered length, concrete strength and reinforcement of the box girders and slabs that are obtained using ECBO metaheuristic algorithm. The design is based on AASHTO standard specification. The constraints are the bending and shear strength, geometric limitations and superstructure deflection. The link of CSiBridge and MATLAB software are used for the optimization process. The methodology carried out for two-cell, three-cell and four-cell box girder bridges. The results show that the total cost of the concrete, bars and formwork for two-cell box girder is less than those of the three- and four-cell box girder bridges.
A. Kaveh, P. Hosseini, N. Hatami, S. R. Hoseini Vaez,
Volume 12, Issue 1 (1-2022)
Abstract
In recent years many researchers prefer to use metaheuristic algorithms to reach the optimum design of structures. In this study, an Enhanced Vibrating Particle System (EVPS) is applied to get the minimum weight of large-scale dome trusses under frequency constraints. Vibration frequencies are important parameters, which can be used to control the responses of a structure that is subjected to dynamic excitation. The truss structures were analyzed by finite element method and optimization processes were implemented by the computer program coded in MATLAB. The effectiveness and efficiency of the Enhanced Vibrating Particle System (EVPS) is investigated in three large-scale dome trusses 600-, 1180-, and 1410-bar to obtain the weight optimization with frequency constraints.
A. Kaveh, J. Jafari Vafa,
Volume 12, Issue 2 (4-2022)
Abstract
The cycle basis of a graph arises in a wide range of engineering problems and has a variety of applications. Minimal and optimal cycle bases reduce the time and memory required for most of such applications. One of the important applications of cycle basis in civil engineering is its use in the force method to frame analysis to generate sparse flexibility matrices, which is needed for optimal analysis.
In this paper, the simulated annealing algorithm has been employed to form suboptimal cycle basis. The simulated annealing algorithm works by using local search generating neighbor solution, and also escapes local optima by accepting worse solutions. The results show that this algorithm can be used to generate suboptimal and subminimal cycle bases. Compared to the existing heuristic algorithms, it provides better results. One of the advantages of this algorithm is its simplicity and its ease for implementation.
A. Kaveh, M. Kamalinejad, K. Biabani Hamedani, H. Arzani,
Volume 12, Issue 2 (4-2022)
Abstract
As a novel strategy, Quantum-behaved particles use uncertainty law and a distinct formulation obtained from solving the time-independent Schrodinger differential equation in the delta-potential-well function to update the solution candidates’ positions. In this case, the local attractors as potential solutions between the best solution and the others are introduced to explore the solution space. Also, the difference between the average and another solution is established as a new step size. In the present paper, the quantum teacher phase is introduced to improve the performance of the current version of the teacher phase of the Teaching-Learning-Based Optimization algorithm (TLBO) by using the formulation obtained from solving the time-independent Schrodinger equation predicting the probable positions of optimal solutions. The results show that QTLBO, an acronym for the Quantum Teaching- Learning- Based Optimization, improves the stability and robustness of the TLBO by defining the quantum teacher phase. The two circulant space trusses with multiple frequency constraints are chosen to verify the quality and performance of QTLBO. Comparing the results obtained from the proposed algorithm with those of the standard version of the TLBO algorithm and other literature methods shows that QTLBO increases the chance of finding a better solution besides improving the statistical criteria compared to the current TLBO.
A. Kaveh, S. M. Hosseini,
Volume 12, Issue 3 (4-2022)
Abstract
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold (DE-MEDT) metaheuristic algorithm is applied to solve the discrete and continuous optimization problems of the truss structures subject to multiple loading conditions and design constraints. DE-MEDT algorithm is a recently proposed metaheuristic developed based on a physical phenomenon called Doppler Effect (DE) with some idealized rules and a mechanism called Mean Euclidian Distance Threshold (MEDT). The efficiency of the DE-MEDT algorithm is evaluated by optimizing five large-scale truss structures with continuous and discrete variables. Comparing the results found by the DE-MEDT algorithm with those of other existing metaheuristics reveals that the DE-MEDT optimizer is a suitable optimization technique for discrete and continuous design optimization of large-scale truss structures.
P. Hosseini, A. Kaveh, N. Hatami, S. R. Hoseini Vaez,
Volume 12, Issue 3 (4-2022)
Abstract
Metaheuristic algorithms are preferred by the many researchers to reach the reliability based design optimization (RBDO) of truss structures. The cross-sectional area of the elements of a truss is considered as design variables for the size optimization under frequency constraints. The design of dome truss structures are optimized based on reliability by a popular metaheuristic optimization technique named Enhanced Vibrating Particle System (EVPS). Finite element analyses of structures and optimization process are coded in MATLAB. Large-scale dome truss of 600-bar, 1180-bar and 1410-bar are investigated in this paper and are compared with the previous studies. Also, a comparison is made between the reliability indexes of Deterministic Design Optimization (DDO) for large dome trusses and Reliability-Based Design Optimization (RBDO).
P. Hosseini, A. Kaveh, S. R. Hoseini Vaez,
Volume 12, Issue 4 (8-2022)
Abstract
The existence of uncertainties in engineering problems makes it essential to consider these effects at all times. Robust design optimization allows a design to be made less sensitive to uncertain input parameters. Actually, robust design optimization reduces the sensitivity of the objective function and the variations in design performance when uncertainty exists. In this study, two space trusses were optimized based on the modulus of elasticity, yield stress, and cross-sectional uncertainties in order to increase the response robustness and decrease the weight. The displacement of one node has been used as the criterion for Robust Design Optimization (RDO) of these two structures. Two trusses with 72 members and 582 members are considered, which are famous trusses in the field of structural optimization. Also, the EVPS meta-heuristic algorithm was employed which is an enhanced version of the VPS algorithm based on the single degrees of freedom of a system with viscous damping.
A. Kaveh, A. Zaerreza,
Volume 12, Issue 4 (8-2022)
Abstract
In this paper, the improved shuffled-based Jaya algorithm (IS-Jaya) is applied to the size optimization of the braced dome with the frequency constraints. IS-Jaya is the enhanced version of the Jaya algorithm that the shuffling process and escaping from local optima are added for it. These two modifications increase the population diversity and ability the escape from the local optima of the Jaya. The robustness and performance of the IS-Jaya are evaluated by the three design examples. The results show that the IS-Jaya algorithm outperforms other state-of-the-art optimization techniques considered in the literature.
L. Mottaghi, A. Kaveh, R. A. Izadifard,
Volume 13, Issue 1 (1-2023)
Abstract
This paper presents a computational framework for optimal design of non-prismatic reinforced concrete box girder bridges. The variables include the geometry of the cross section, tapered length, concrete strength and reinforcement of box girders and slabs. These are obtained by the enhanced colliding bodies optimization algorithm to optimizing the cost and again CO2 emission. Loading and design is based on the AASHTO standard specification. The methodology is illustrated by a three-span continuous bridge. The trade-off between optimal cost and CO2 emission in this type of bridge indicates that the difference of costs, as well as CO2 emissions in the solution with both objectives is less than 1%. However, the optimal variables in the cost objective are different from the variables of CO2 emission objective.
M. Paknahad, P. Hosseini, A. Kaveh,
Volume 13, Issue 1 (1-2023)
Abstract
Optimization methods are essential in today's world. Several types of optimization methods exist, and deterministic methods cannot solve some problems, so approximate optimization methods are used. The use of approximate optimization methods is therefore widespread. One of the metaheuristic algorithms for optimization, the EVPS algorithm has been successfully applied to engineering problems, particularly structural engineering problems. As this algorithm requires experimental parameters, this research presents a method for determining these parameters for each problem and a self-adaptive algorithm called the SA-EVPS algorithm. In this study, the SA-EVPS algorithm is compared with the EVPS algorithm using the 72-bar spatial truss structure and three classical benchmarked functions
A. Kaveh, M. R. Seddighian, N. Farsi,
Volume 13, Issue 2 (4-2023)
Abstract
Despite the advantages of the plastic limit analysis of structures, this robust method suffers from some drawbacks such as intense computational cost. Through two recent decades, metaheuristic algorithms have improved the performance of plastic limit analysis, especially in structural problems. Additionally, graph theoretical algorithms have decreased the computational time of the process impressively. However, the iterative procedure and its relative computational memory and time have remained a challenge, up to now. In this paper, a metaheuristic-based artificial neural network (ANN), which is categorized as a supervised machine learning technique, has been employed to determine the collapse load factors of two-dimensional frames in an absolutely fast manner. The numerical examples indicate that the proposed method's performance and accuracy are satisfactory.
A. Kaveh, A. Zaerreza, J. Zaerreza,
Volume 13, Issue 2 (4-2023)
Abstract
Vibrating particles system (VPS) is a swarm intelligence-based optimizer inspired by free vibration with a single degree of freedom systems. VPS is one of the well-known algorithms in structural optimization problems. However, its performance can be improved to find a better solution. This study introduces an improved version of the VPS using the statistical regeneration mechanism for the optimal design of the structures with discrete variables. The improved version is named VPS-SRM, and its efficiency is tested in the three real-size optimization problems. The optimization results reveal the capability and robustness of the VPS-SRM for the optimal design of the structures with discrete sizing variables.
A. Kaveh, A. Zaerreza,
Volume 13, Issue 3 (7-2023)
Abstract
In this paper, three recently improved metaheuristic algorithms are utilized for the optimum design of the frame structures using the force method. These algorithms include enhanced colliding bodies optimization (ECBO), improved shuffled Jaya algorithm (IS-Jaya), and Vibrating particles system - statistical regeneration mechanism algorithm (VPS-SRM). The structures considered in this study have a lower degree of statical indeterminacy (DSI) than their degree of kinematical indeterminacy (DKI). Therefore, the force method is the most suitable analysis method for these structures. The robustness and performance of these methods are evaluated by the three design examples named 1-bay 10-story steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel frame.
P. Hosseini, A. Kaveh, A. Naghian,
Volume 13, Issue 3 (7-2023)
Abstract
Cement, water, fine aggregates, and coarse aggregates are combined to produce concrete, which is the most common substance after water and has a distinctly compressive strength, the most important quality indicator. Hardened concrete's compressive strength is one of its most important properties. The compressive strength of concrete allows us to determine a wide range of concrete properties based on this characteristic, including tensile strength, shear strength, specific weight, durability, erosion resistance, sulfate resistance, and others. Increasing concrete's compressive strength solely by modifying aggregate characteristics and without affecting water and cement content is a challenge in the direction of concrete production. Artificial neural networks (ANNs) can be used to reduce laboratory work and predict concrete's compressive strength. Metaheuristic algorithms can be applied to ANN in an efficient and targeted manner, since they are intelligent systems capable of solving a wide range of problems. This study proposes new samples using the Taguchi method and tests them in the laboratory. Following the training of an ANN with the obtained results, the highest compressive strength is calculated using the EVPS and SA-EVPS algorithms.
A. Kaveh, S. Rezazadeh Ardebili,
Volume 13, Issue 3 (7-2023)
Abstract
This paper deals with the optimum design of the mixed structures that consists of two parts, a lower part made of concrete and an upper part made of steel. Current codes and available commercial software packages do not provide analytical solutions for such structural systems, especially if a decoupled analysis is performed where the lower part is excited by ground motion and its response of total accelerations is used for the upper part. Due to irregular damping ratios, mass and stiffness, dynamic response of each part of a mixed structure differs significantly. The present paper aims at comparing of the optimum design of these structures under the coupled and decoupled models. Toward that goal, the coupled and decoupled time history analyses are performed and the optimum design of the two methods are compared. The results of the two approach show that the cost of the decoupled analysis is higher than the cost of the coupled analysis and the design of the decoupled method may be uneconomical, because the interaction between the two upper and lower parts is neglected.
P. Hosseini, A. Kaveh, A. Naghian,
Volume 13, Issue 4 (10-2023)
Abstract
In this study, experimental and computational approaches are used in order to develop and optimize self-compacting concrete mixes (Artificial neural network, EVPS metaheuristic algorithm, Taguchi method). Initially, ten basic mix designs were tested, and an artificial neural network was trained to predict the properties of these mixes. The network was then used to generate ten optimized mixes using the EVPS algorithm. Three mixes with the highest compressive strength were selected, and additional tests were conducted using the Taguchi approach. Inputting these results, along with the initial mix designs, into a second trained neural network, 10 new mix designs were tested using the network. Two of these mixes did not meet the requirements for self-compacting concrete, specifically in the U-box test. However, the predicted compressive strength results showed excellent agreement with low error percentages compared to the laboratory results, which indicates the effectiveness of the artificial neural network in predicting concrete properties, thus indicating that self-compacting concrete properties can be predicted with reasonable accuracy. The paper emphasizes the reliability and cost-effectiveness of artificial neural networks in predicting concrete properties. The study highlights the importance of providing diverse and abundant training data to improve the accuracy of predictions. The results demonstrate that neural networks can serve as valuable tools for predicting concrete characteristics, saving time and resources in the process. Overall, the research provides insights into the development of self-compacting concrete mixes and highlights the effectiveness of computational approaches in optimizing concrete performance.