S. Kazemzadeh Azad, S. Kazemzadeh Azad, O. Hasançebi,
Volume 6, Issue 4 (10-2016)
Abstract
Beginning in 2011 an international academic contest named as International Student Competition in Structural Optimization (ISCSO) has been organized by the authors to encourage undergraduate and graduate students to solve structural engineering optimization problems. During the past events on the one hand a unique platform is provided for a fair comparison of structural optimization algorithms; and on the other hand it is attempted to draw the attention of students to the interesting and joyful aspects of dealing with optimization problems. This year, after five online events successfully held with support and help of our advisory and scientific committee members from different universities all around the world, the authors decided to gather the test problems of the ISCSO in this technical report as an optimization test set. Beside the well -known traditional benchmark instances, the provided test set might also be used for further performance evaluation of future structural optimization algorithms.
M. Paknahd, P. Hosseini, A. Kaveh, S.j.s. Hakim,
Volume 15, Issue 1 (1-2025)
Abstract
Structural optimization plays a crucial role in engineering design, aiming to minimize weight and cost while satisfying performance constraints. This research presents a novel Self-Adaptive Enhanced Vibrating Particle System (SA-EVPS) algorithm that automatically adjusts algorithm parameters to improve optimization performance. The algorithm is applied to two challenging examples from the International Student Competition in Structural Optimization (ISCSO) benchmark suite: the 314-member truss structure (ISCSO_2018) and the 345-member truss structure (ISCSO_2021). Results demonstrate that SA-EVPS achieves significantly better solutions compared to previous studies using the Exponential Big Bang-Big Crunch (EBB-BC) algorithm. For ISCSO_2018, SA-EVPS achieved a minimum weight of 16543.57 kg compared to 17934.3 kg for the best EBB-BC variant—a 7.75% improvement. Similarly, for ISCSO_2021, SA-EVPS achieved 4292.71 kg versus 4399.0 kg for the best EBB-BC variant—a 2.42% improvement. The proposed algorithm also demonstrates superior convergence behavior and solution consistency, with coefficients of variation of 3.13% and 1.21% for the two benchmark problems, compared to 12.5% and 2.4% for the best EBB-BC variant. These results highlight the effectiveness of the SA-EVPS algorithm for solving complex structural optimization problems and demonstrate its potential for engineering applications.