Search published articles


Showing 2 results for Inverse Problem

A. Ghadimi Hamzehkolaei, A. Zare Hosseinzadeh , G. Ghodrati Amiri,
Volume 6, Issue 4 (10-2016)
Abstract

Presenting structural damage detection problem as an inverse model-updating approach is one of the well-known methods which can reach to informative features of damages. This paper proposes a model-based method for fault prognosis in engineering structures. A new damage-sensitive cost function is suggested by employing the main concepts of the Modal Assurance Criterion (MAC) on the first several modes’ data. Then, Chaotic Imperialist Competitive Algorithm (CICA), a modified version of the original Imperialist Competitive Algorithm (ICA) which has recently been developed for optimal design of complex trusses, is employed for solving the suggested cost function. Finally, the optimal solution of the problem is reported as damage detection results. The efficiency of the proposed method for damage identification is evaluated by studying three numerical examples of structures. Several single and multiple damage patterns are simulated and different number of modal data are utilized as input data (in noise free and noisy states) for damage detection via suggested method. Moreover, different comparative studies are carried out for evaluating the preference of the suggested method. All the obtained results emphasize the high level of accuracy of the suggested method and introduce it as a viable method for identifying not only damage locations, but also damage severities.


M.r. Mohammadizadeh, E. Jahanfekr, S. Shojaee,
Volume 10, Issue 4 (10-2020)
Abstract

The purpose of the present study is the damage detection in the thin plates in terms of the wide application of such structures in various branches of engineering such as structural, mechanical, aerospace, shipbuilding, etc. using gradient-based second-order numerical optimization techniques. The technique used for optimization in this study is the second-order Levenberg-Marquardt algorithm (SOLMA). Using the acceleration response in a number of structural nodes under dynamic excitation, identification of the location and extent of damage in the plate elements are obtained by the proposed algorithm over an iterative cycle and by updating the sensitivity matrix. The damage has been assumed in the form of decreased modulus of elasticity in linear mode. A numerical problem has been solved and presented in order to verify and compare the proposed damage detection method with other methods. Also several numerical problems have been solved and its results have been presented in order to evaluate different scenarios such as one or more damages, small or large damage extent, absence or presence of noise with different levels, number of measured responses (number of sensors), position of measured points and the dynamic analysis time of the damage detection problem with the proposed method. The results show the appropriate accuracy, efficiency and performance of the proposed damage detection method.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb