Volume 4, Issue 2 (6-2014)                   IJOCE 2014, 4(2): 233-259 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kazemzadeh Azad S, Hasançebi O, Kazemzadeh Azad S. COMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES. IJOCE 2014; 4 (2) :233-259
URL: http://ijoce.iust.ac.ir/article-1-172-en.html
Abstract:   (24000 Views)
Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC-LRFD specifications. To this end an upper bound strategy (UBS), which is a recently proposed strategy for reducing the total number of structural analyses in metaheuristic optimization algorithms, is used in conjunction with an exponential variant of the well-known big bang-big crunch optimization algorithm. The performance of the UBS integrated algorithm is investigated in the optimum design of two large-scale steel frame structures with 3860 and 11540 structural members. The obtained numerical results clearly reveal the usefulness of the employed technique in practical optimum design of large-scale structural systems even using regular computers.
Full-Text [PDF 1543 kb]   (5770 Downloads)    
Type of Study: Research | Subject: Optimal design
Received: 2014/07/6 | Accepted: 2014/07/6 | Published: 2014/07/6

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb