دوره 15، شماره 2 - ( 1-1404 )                   جلد 15 شماره 2 صفحات 278-259 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kaveh A, Eskandari A. TUNED METAHEURISTIC ALGORITHMS FOR OPTIMAL DESIGN PROBLEMS WITH CONTINUOUS VARIABLES. IJOCE 2025; 15 (2) :259-278
URL: http://ijoce.iust.ac.ir/article-1-637-fa.html
TUNED METAHEURISTIC ALGORITHMS FOR OPTIMAL DESIGN PROBLEMS WITH CONTINUOUS VARIABLES. عنوان نشریه. 1404; 15 (2) :259-278

URL: http://ijoce.iust.ac.ir/article-1-637-fa.html


چکیده:   (1282 مشاهده)
Metaheuristic algorithms mostly consist of some parameters influencing their performance when faced with various optimization problems. Therefore, this paper applies Multi-Stage Parameter Adjustment (MSPA), which employs Extreme Latin Hypercube Sampling (XLHS), Primary Optimizer, and Artificial Neural Networks (ANNs) to a recently developed algorithm called the African Vulture Optimization Algorithm (AVOA) and a well-known one named Particle Swarm Optimization (PSO) for tuning their parameters. The performance of PSO is tested against two engineering and AVOA for two structural optimization problems, and their corresponding results are compared to those of their default versions. The results showed that the employment of MSPA improved the performance of both metaheuristic algorithms in all the considered optimization problems.
متن کامل [PDF 2761 kb]   (528 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: Optimal design
دریافت: 1404/2/4 | پذیرش: 1404/4/7

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به دانشگاه علم و صنعت ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Iran University of Science & Technology

Designed & Developed by : Yektaweb